These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25116798)

  • 21. Finding the targets of a drug by integration of gene expression data with a protein interaction network.
    Laenen G; Thorrez L; Börnigen D; Moreau Y
    Mol Biosyst; 2013 Jul; 9(7):1676-85. PubMed ID: 23443074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.
    Sawada R; Iwata H; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Dec; 55(12):2717-30. PubMed ID: 26580494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug repositioning by prediction of drug's anatomical therapeutic chemical code via network-based inference approaches.
    Peng Y; Wang M; Xu Y; Wu Z; Wang J; Zhang C; Liu G; Li W; Li J; Tang Y
    Brief Bioinform; 2021 Mar; 22(2):2058-2072. PubMed ID: 32221552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A weight of evidence approach to causal inference.
    Swaen G; van Amelsvoort L
    J Clin Epidemiol; 2009 Mar; 62(3):270-7. PubMed ID: 18834711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug-target interaction prediction: A Bayesian ranking approach.
    Peska L; Buza K; Koller J
    Comput Methods Programs Biomed; 2017 Dec; 152():15-21. PubMed ID: 29054256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Drug-Gene-Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning.
    Kim Y; Cho YR
    Biomedicines; 2023 Jul; 11(7):. PubMed ID: 37509637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity.
    Zhang P; Wang F; Hu J
    AMIA Annu Symp Proc; 2014; 2014():1258-67. PubMed ID: 25954437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug-target interactions prediction using marginalized denoising model on heterogeneous networks.
    Tang C; Zhong C; Chen D; Wang J
    BMC Bioinformatics; 2020 Jul; 21(1):330. PubMed ID: 32703151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel method for predicting the progression rate of ALS disease based on automatic generation of probabilistic causal chains.
    Ahangaran M; Jahed-Motlagh MR; Minaei-Bidgoli B
    Artif Intell Med; 2020 Jul; 107():101879. PubMed ID: 32828438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NTD-DR: Nonnegative tensor decomposition for drug repositioning.
    Jamali AA; Tan Y; Kusalik A; Wu FX
    PLoS One; 2022; 17(7):e0270852. PubMed ID: 35862409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring new drug indications using the complementarity between clinical disease signatures and drug effects.
    Jang D; Lee S; Lee J; Kim K; Lee D
    J Biomed Inform; 2016 Feb; 59():248-57. PubMed ID: 26707452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting drug-target interaction networks of human diseases based on multiple feature information.
    Yu W; Yan Y; Liu Q; Wang J; Jiang Z
    Pharmacogenomics; 2013 Nov; 14(14):1701-7. PubMed ID: 24192119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linking biochemical pathways and networks to adverse drug reactions.
    Zheng H; Wang H; Xu H; Wu Y; Zhao Z; Azuaje F
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):131-7. PubMed ID: 24893363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting Drug-Target Interactions via Within-Score and Between-Score.
    Shi JY; Liu Z; Yu H; Li YJ
    Biomed Res Int; 2015; 2015():350983. PubMed ID: 26543857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation and analysis of molecular networks involving diseases and drugs.
    Kanehisa M
    Genome Inform; 2009 Oct; 23(1):212-3. PubMed ID: 20180276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning.
    Lotfi Shahreza M; Ghadiri N; Mousavi SR; Varshosaz J; Green JR
    J Biomed Inform; 2017 Apr; 68():167-183. PubMed ID: 28300647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Practical causal inference for ecoepidemiologists.
    Fox GA
    J Toxicol Environ Health; 1991 Aug; 33(4):359-73. PubMed ID: 1875428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.