BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25116801)

  • 41. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells.
    Dahl-Halvarsson M; Pokrzywa M; Rauthan M; Pilon M; Tajsharghi H
    PLoS One; 2017; 12(1):e0170613. PubMed ID: 28125727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The C terminus (amino acids 75-94) and the linker region (amino acids 42-54) of the Ca2+-binding protein S100A1 differentially enhance sarcoplasmic Ca2+ release in murine skinned skeletal muscle fibers.
    Most P; Remppis A; Weber C; Bernotat J; Ehlermann P; Pleger ST; Kirsch W; Weber M; Uttenweiler D; Smith GL; Katus HA; Fink RH
    J Biol Chem; 2003 Jul; 278(29):26356-64. PubMed ID: 12721284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia.
    Manno C; Figueroa L; Royer L; Pouvreau S; Lee CS; Volpe P; Nori A; Zhou J; Meissner G; Hamilton SL; Ríos E
    J Physiol; 2013 Sep; 591(18):4439-57. PubMed ID: 23798496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autophagic vacuolar pathology in desminopathies.
    Weihl CC; Iyadurai S; Baloh RH; Pittman SK; Schmidt RE; Lopate G; Pestronk A; Harms MB
    Neuromuscul Disord; 2015 Mar; 25(3):199-206. PubMed ID: 25557463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice.
    Paolini C; Quarta M; Wei-LaPierre L; Michelucci A; Nori A; Reggiani C; Dirksen RT; Protasi F
    Skelet Muscle; 2015; 5():10. PubMed ID: 26075051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models?
    Canato M; Capitanio P; Reggiani C; Cancellara L
    J Muscle Res Cell Motil; 2015 Feb; 36(1):61-9. PubMed ID: 25424378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triadins modulate intracellular Ca(2+) homeostasis but are not essential for excitation-contraction coupling in skeletal muscle.
    Shen X; Franzini-Armstrong C; Lopez JR; Jones LR; Kobayashi YM; Wang Y; Kerrick WG; Caswell AH; Potter JD; Miller T; Allen PD; Perez CF
    J Biol Chem; 2007 Dec; 282(52):37864-74. PubMed ID: 17981799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.
    Roos A; Buchkremer S; Kollipara L; Labisch T; Gatz C; Zitzelsberger M; Brauers E; Nolte K; Schröder JM; Kirschner J; Jesse CM; Goebel HH; Goswami A; Zimmermann R; Zahedi RP; Senderek J; Weis J
    Acta Neuropathol; 2014 May; 127(5):761-77. PubMed ID: 24362440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calsequestrin targeting to sarcoplasmic reticulum of skeletal muscle fibers.
    Nori A; Valle G; Bortoloso E; Turcato F; Volpe P
    Am J Physiol Cell Physiol; 2006 Aug; 291(2):C245-53. PubMed ID: 16571864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overexpression of calsequestrin in L6 myoblasts: formation of endoplasmic reticulum subdomains and their evolution into discrete vacuoles where aggregates of the protein are specifically accumulated.
    Gatti G; Podini P; Meldolesi J
    Mol Biol Cell; 1997 Sep; 8(9):1789-803. PubMed ID: 9307974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle.
    Flix B; de la Torre C; Castillo J; Casal C; Illa I; Gallardo E
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1927-38. PubMed ID: 23792176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dantrolene sodium increases calcium binding by human recombinant cardiac calsequestrin and calcium loading by sheep cardiac sarcoplasmic reticulum.
    Loescher CM; Gibson LM; Stephenson DG
    Acta Physiol (Oxf); 2019 Jul; 226(3):e13261. PubMed ID: 30710413
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies.
    Duleh S; Wang X; Komirenko A; Margeta M
    Acta Neuropathol Commun; 2016 Oct; 4(1):115. PubMed ID: 27799074
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression.
    Zhao X; Min CK; Ko JK; Parness J; Kim DH; Weisleder N; Ma J
    Biophys J; 2010 Sep; 99(5):1556-64. PubMed ID: 20816068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cylindrical Spirals in Skeletal Muscles Originate From the Longitudinal Sarcoplasmic Reticulum.
    Xu JW; Liu FC; Li W; Zhao YY; Zhao DD; Luo YB; Lu JQ; Yan CZ
    J Neuropathol Exp Neurol; 2016 Feb; 75(2):148-55. PubMed ID: 26733584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The origin of tubular aggregates in human myopathies.
    Chevessier F; Bauché-Godard S; Leroy JP; Koenig J; Paturneau-Jouas M; Eymard B; Hantaï D; Verdière-Sahuqué M
    J Pathol; 2005 Nov; 207(3):313-23. PubMed ID: 16178054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum.
    Maclennan DH; Zvaritch E
    Biochim Biophys Acta; 2011 May; 1813(5):948-64. PubMed ID: 21118704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.