BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 25116894)

  • 1. Three-dimensional in vitro tumor models for cancer research and drug evaluation.
    Xu X; Farach-Carson MC; Jia X
    Biotechnol Adv; 2014 Nov; 32(7):1256-1268. PubMed ID: 25116894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
    Rijal G; Li W
    Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heralding a new paradigm in 3D tumor modeling.
    Fong EL; Harrington DA; Farach-Carson MC; Yu H
    Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction.
    Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis.
    Bray LJ; Binner M; Holzheu A; Friedrichs J; Freudenberg U; Hutmacher DW; Werner C
    Biomaterials; 2015; 53():609-20. PubMed ID: 25890757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing.
    Fernandes DC; Canadas RF; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-based 3D cell culture models in cancer research.
    Abuwatfa WH; Pitt WG; Husseini GA
    J Biomed Sci; 2024 Jan; 31(1):7. PubMed ID: 38221607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physically Active Bioreactors for Tissue Engineering Applications.
    Castro N; Ribeiro S; Fernandes MM; Ribeiro C; Cardoso V; Correia V; Minguez R; Lanceros-Mendez S
    Adv Biosyst; 2020 Oct; 4(10):e2000125. PubMed ID: 32924326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity.
    Peck Y; Wang DA
    Expert Opin Drug Deliv; 2013 Mar; 10(3):369-83. PubMed ID: 23289593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds.
    Fong EL; Lamhamedi-Cherradi SE; Burdett E; Ramamoorthy V; Lazar AJ; Kasper FK; Farach-Carson MC; Vishwamitra D; Demicco EG; Menegaz BA; Amin HM; Mikos AG; Ludwig JA
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6500-5. PubMed ID: 23576741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages.
    Habanjar O; Diab-Assaf M; Caldefie-Chezet F; Delort L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.