BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25117441)

  • 1. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.
    Tran PL; Cha HJ; Lee JS; Park SH; Woo EJ; Park KH
    Biochem Biophys Res Commun; 2014 Sep; 451(4):541-7. PubMed ID: 25117441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase.
    Tran PL; Lee JS; Park KH
    FEBS Lett; 2014 Feb; 588(4):620-4. PubMed ID: 24440349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity.
    Rivera MH; López-Munguía A; Soberón X; Saab-Rincón G
    Protein Eng; 2003 Jul; 16(7):505-14. PubMed ID: 12915728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Val289 residue in the alpha-amylase of Bacillus amyloliquefaciens MTCC 610: an analysis by site directed mutagenesis.
    Priyadharshini R; Hemalatha D; Gunasekaran P
    J Microbiol Biotechnol; 2010 Mar; 20(3):563-8. PubMed ID: 20372028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Val326 of Thermoactinomyces vulgaris R-47 amylase II modulates the preference for alpha-(1,4)- and alpha-(1,6)-glycosidic linkages.
    Ito K; Ito S; Ishino K; Shimizu-Ibuka A; Sakai H
    Biochim Biophys Acta; 2007 Apr; 1774(4):443-9. PubMed ID: 17400040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of Tyr302, His235 and Asp194 in the α-amylase from Bacillus licheniformis.
    Qin Y; Fang Z; Pan F; Zhao Y; Li H; Wu H; Meng X
    Biotechnol Lett; 2012 May; 34(5):895-9. PubMed ID: 22261861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of catalytic residues of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) by site-directed mutagenesis.
    Ichikawa K; Tonozuka T; Yokota T; Shimura Y; Sakano Y
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2692-5. PubMed ID: 11210138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature on subsite map of Bacillus licheniformis alpha-amylase.
    Kandra L; Remenyik J; Gyémánt G; Lipták A
    Acta Biol Hung; 2006 Sep; 57(3):367-75. PubMed ID: 17048700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques.
    Brayer GD; Sidhu G; Maurus R; Rydberg EH; Braun C; Wang Y; Nguyen NT; Overall CM; Withers SG
    Biochemistry; 2000 Apr; 39(16):4778-91. PubMed ID: 10769135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human salivary alpha-amylase Trp58 situated at subsite -2 is critical for enzyme activity.
    Ramasubbu N; Ragunath C; Mishra PJ; Thomas LM; Gyémánt G; Kandra L
    Eur J Biochem; 2004 Jun; 271(12):2517-29. PubMed ID: 15182367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing transglycosylation activity in a liquefying alpha-amylase.
    Saab-Rincón G; del-Río G; Santamaría RI; López-Munguía A; Soberón X
    FEBS Lett; 1999 Jun; 453(1-2):100-6. PubMed ID: 10403384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of modifying histidine residues on the action of Bacillus amyloliquefaciens and barley-malt alpha-amylases.
    Nakatani H; Hamaguchi K; Ishikawa K
    Carbohydr Res; 1994 Apr; 257(1):155-61. PubMed ID: 8004636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis alpha-amylases and insights into engineering alpha-amylase variants active under acidic conditions.
    Lee S; Oneda H; Minoda M; Tanaka A; Inouye K
    J Biochem; 2006 Jun; 139(6):997-1005. PubMed ID: 16788050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L
    Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution.
    Machius M; Wiegand G; Huber R
    J Mol Biol; 1995 Mar; 246(4):545-59. PubMed ID: 7877175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates.
    Kandra L; Gyémánt G; Remenyik J; Hovánszki G; Lipták A
    FEBS Lett; 2002 May; 518(1-3):79-82. PubMed ID: 11997021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.