These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 25117512)
1. Texture feature analysis for computer-aided diagnosis on pulmonary nodules. Han F; Wang H; Zhang G; Han H; Song B; Li L; Moore W; Lu H; Zhao H; Liang Z J Digit Imaging; 2015 Feb; 28(1):99-115. PubMed ID: 25117512 [TBL] [Abstract][Full Text] [Related]
2. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa Domínguez Hde J; Nandayapa Alfaro Mde J Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834 [TBL] [Abstract][Full Text] [Related]
3. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Zhang W; Wang X; Li X; Chen J Comput Biol Med; 2018 Jan; 92():64-72. PubMed ID: 29154123 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Way TW; Sahiner B; Chan HP; Hadjiiski L; Cascade PN; Chughtai A; Bogot N; Kazerooni E Med Phys; 2009 Jul; 36(7):3086-98. PubMed ID: 19673208 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity. Nishio M; Nagashima C Acad Radiol; 2017 Mar; 24(3):328-336. PubMed ID: 28110797 [TBL] [Abstract][Full Text] [Related]
6. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Aoyama M; Li Q; Katsuragawa S; Li F; Sone S; Doi K Med Phys; 2003 Mar; 30(3):387-94. PubMed ID: 12674239 [TBL] [Abstract][Full Text] [Related]
7. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Ge Z; Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Bogot N; Kazerooni EA; Wei J; Zhou C Med Phys; 2005 Aug; 32(8):2443-54. PubMed ID: 16193773 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639 [TBL] [Abstract][Full Text] [Related]
11. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Shah SK; McNitt-Gray MF; Rogers SR; Goldin JG; Suh RD; Sayre JW; Petkovska I; Kim HJ; Aberle DR Acad Radiol; 2005 Oct; 12(10):1310-9. PubMed ID: 16179208 [TBL] [Abstract][Full Text] [Related]
12. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided detection of lung nodules using outer surface features. Demir Ö; Yılmaz Çamurcu A Biomed Mater Eng; 2015; 26 Suppl 1():S1213-22. PubMed ID: 26405880 [TBL] [Abstract][Full Text] [Related]
14. Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Zhu Y; Tan Y; Hua Y; Wang M; Zhang G; Zhang J J Digit Imaging; 2010 Feb; 23(1):51-65. PubMed ID: 19242759 [TBL] [Abstract][Full Text] [Related]
15. A novel approach to nodule feature optimization on thin section thoracic CT. Samala R; Moreno W; You Y; Qian W Acad Radiol; 2009 Apr; 16(4):418-27. PubMed ID: 19268853 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns. Wang Q; Kang W; Wu C; Wang B Clin Imaging; 2013; 37(1):62-9. PubMed ID: 23206609 [TBL] [Abstract][Full Text] [Related]
17. Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Wang W; Luo J; Yang X; Lin H Acad Radiol; 2015 Apr; 22(4):488-95. PubMed ID: 25601306 [TBL] [Abstract][Full Text] [Related]
18. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
19. Toward Understanding the Size Dependence of Shape Features for Predicting Spiculation in Lung Nodules for Computer-Aided Diagnosis. Niehaus R; Raicu DS; Furst J; Armato S J Digit Imaging; 2015 Dec; 28(6):704-17. PubMed ID: 25708891 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT. Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]