These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 25117512)
21. A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. Dhara AK; Mukhopadhyay S; Dutta A; Garg M; Khandelwal N J Digit Imaging; 2016 Aug; 29(4):466-75. PubMed ID: 26738871 [TBL] [Abstract][Full Text] [Related]
22. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
23. Content-Based Image Retrieval System for Pulmonary Nodules: Assisting Radiologists in Self-Learning and Diagnosis of Lung Cancer. Dhara AK; Mukhopadhyay S; Dutta A; Garg M; Khandelwal N J Digit Imaging; 2017 Feb; 30(1):63-77. PubMed ID: 27678255 [TBL] [Abstract][Full Text] [Related]
24. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. Petrou M; Quint LE; Nan B; Baker LH AJR Am J Roentgenol; 2007 Feb; 188(2):306-12. PubMed ID: 17242235 [TBL] [Abstract][Full Text] [Related]
25. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Messay T; Hardie RC; Tuinstra TR Med Image Anal; 2015 May; 22(1):48-62. PubMed ID: 25791434 [TBL] [Abstract][Full Text] [Related]
26. Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologists' performance. Way T; Chan HP; Hadjiiski L; Sahiner B; Chughtai A; Song TK; Poopat C; Stojanovska J; Frank L; Attili A; Bogot N; Cascade PN; Kazerooni EA Acad Radiol; 2010 Mar; 17(3):323-32. PubMed ID: 20152726 [TBL] [Abstract][Full Text] [Related]
27. Toward precise pulmonary nodule descriptors for nodule type classification. Farag A; Elhabian S; Graham J; Farag A; Falk R Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):626-33. PubMed ID: 20879453 [TBL] [Abstract][Full Text] [Related]
28. Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction. Lee MC; Boroczky L; Sungur-Stasik K; Cann AD; Borczuk AC; Kawut SM; Powell CA Artif Intell Med; 2010 Sep; 50(1):43-53. PubMed ID: 20570118 [TBL] [Abstract][Full Text] [Related]
29. A Segmentation Framework of Pulmonary Nodules in Lung CT Images. Mukhopadhyay S J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544 [TBL] [Abstract][Full Text] [Related]
30. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Saien S; Hamid Pilevar A; Abrishami Moghaddam H Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113 [TBL] [Abstract][Full Text] [Related]
31. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Naqi SM; Sharif M; Yasmin M Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880 [TBL] [Abstract][Full Text] [Related]
32. Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research. Ferreira Junior JR; Oliveira MC; de Azevedo-Marques PM J Digit Imaging; 2016 Dec; 29(6):716-729. PubMed ID: 27440183 [TBL] [Abstract][Full Text] [Related]
33. An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification. Huang YS; Wang TC; Huang SZ; Zhang J; Chen HM; Chang YC; Chang RF Comput Methods Programs Biomed; 2023 Feb; 229():107278. PubMed ID: 36463674 [TBL] [Abstract][Full Text] [Related]
34. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Hwang IP; Park CM; Park SJ; Lee SM; McAdams HP; Jeon YK; Goo JM Invest Radiol; 2015 Nov; 50(11):798-804. PubMed ID: 26146871 [TBL] [Abstract][Full Text] [Related]
35. A novel lung nodules detection scheme based on vessel segmentation on CT images. Jia T; Zhang H; Meng H Biomed Mater Eng; 2014; 24(6):3179-86. PubMed ID: 25227026 [TBL] [Abstract][Full Text] [Related]
36. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740 [TBL] [Abstract][Full Text] [Related]
37. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. Kaya A; Can AB J Biomed Inform; 2015 Aug; 56():69-79. PubMed ID: 26008877 [TBL] [Abstract][Full Text] [Related]
38. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
39. Automated lung nodule classification following automated nodule detection on CT: a serial approach. Armato SG; Altman MB; Wilkie J; Sone S; Li F; Doi K; Roy AS Med Phys; 2003 Jun; 30(6):1188-97. PubMed ID: 12852543 [TBL] [Abstract][Full Text] [Related]
40. 3D shape analysis to reduce false positives for lung nodule detection systems. Filho AOC; Silva AC; de Paiva AC; Nunes RA; Gattass M Med Biol Eng Comput; 2017 Aug; 55(8):1199-1213. PubMed ID: 27752930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]