These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25117530)

  • 1. Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing.
    Cabrera C; Fine-Morris M; Pokross M; Kish K; Michalczyk S; Cahn M; Klei H; Russo MF
    J Lab Autom; 2014 Dec; 19(6):517-27. PubMed ID: 25117530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Capabilities of EvoBot: A Modular, Open-Source Liquid-Handling Robot.
    Nejatimoharrami F; Faina A; Stoy K
    SLAS Technol; 2017 Oct; 22(5):500-506. PubMed ID: 28378607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAGAS: Simulated annealing and greedy algorithm scheduler for laboratory automation.
    Arai Y; Takahashi K; Horinouchi T; Takahashi K; Ozaki H
    SLAS Technol; 2023 Aug; 28(4):264-277. PubMed ID: 36997066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory automation in a functional programming language.
    Runciman C; Clare A; Harkness R
    J Lab Autom; 2014 Dec; 19(6):569-76. PubMed ID: 25124157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated image-collection system for crystallization experiments using SBS standard microplates.
    Brostromer E; Nan J; Su XD
    Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):119-25. PubMed ID: 17242505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints.
    Itoh TD; Horinouchi T; Uchida H; Takahashi K; Ozaki H
    SLAS Technol; 2021 Dec; 26(6):650-659. PubMed ID: 34167357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.
    Cherezov V; Peddi A; Muthusubramaniam L; Zheng YF; Caffrey M
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1795-807. PubMed ID: 15388926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point-of-Care Test Equipment for Flexible Laboratory Automation.
    You WS; Park JJ; Jin SM; Ryew SM; Choi HR
    J Lab Autom; 2014 Aug; 19(4):403-12. PubMed ID: 24496480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One plate, two plates, a thousand plates. How crystallisation changes with large numbers of samples.
    Newman J
    Methods; 2011 Sep; 55(1):73-80. PubMed ID: 21571072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time multiple human perception with color-depth cameras on a mobile robot.
    Zhang H; Reardon C; Parker LE
    IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot allows neuroscientists to access brain cells.
    Rosania K
    Lab Anim (NY); 2012 Oct; 41(10):272. PubMed ID: 22992497
    [No Abstract]   [Full Text] [Related]  

  • 14. Integrated Colony Imaging, Analysis, and Selection Device for Regenerative Medicine.
    Kwee E; Herderick EE; Adams T; Dunn J; Germanowski R; Krakosh F; Boehm C; Monnich J; Powell K; Muschler G
    SLAS Technol; 2017 Apr; 22(2):217-223. PubMed ID: 28095177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.
    Hiraki M; Kato R; Nagai M; Satoh T; Hirano S; Ihara K; Kudo N; Nagae M; Kobayashi M; Inoue M; Uejima T; Oda S; Chavas LM; Akutsu M; Yamada Y; Kawasaki M; Matsugaki N; Igarashi N; Suzuki M; Wakatsuki S
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1058-65. PubMed ID: 16929107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
    Higginson JS; Neptune RR; Anderson FC
    J Biomech; 2005 Sep; 38(9):1938-42. PubMed ID: 16023483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal vaccination schedules using simulated annealing.
    Pennisi M; Catanuto R; Pappalardo F; Motta S
    Bioinformatics; 2008 Aug; 24(15):1740-2. PubMed ID: 18535084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic surgery setup simulation with the integration of inverse-kinematics computation and medical imaging.
    Hayashibe M; Suzuki N; Hashizume M; Konishi K; Hattori A
    Comput Methods Programs Biomed; 2006 Jul; 83(1):63-72. PubMed ID: 16828195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Analytical Measurement Processes Using a Dual-Arm Robotic System.
    Fleischer H; Joshi S; Roddelkopf T; Klos M; Thurow K
    SLAS Technol; 2019 Jun; 24(3):354-356. PubMed ID: 30816065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.