BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25117550)

  • 1. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes.
    Jacobs CB; Vickrey TL; Venton BJ
    Analyst; 2011 Sep; 136(17):3557-65. PubMed ID: 21373669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine.
    Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ
    Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests.
    Xiao N; Venton BJ
    Anal Chem; 2012 Sep; 84(18):7816-22. PubMed ID: 22823497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection.
    Zestos AG; Venton BJ
    ECS Trans; 2017 Oct; 80(10):1497-1509. PubMed ID: 33859773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.
    Rodríguez MC; Rubianes MD; Rivas GA
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6003-9. PubMed ID: 19198338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication-Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine.
    Zestos AG; Venton BJ
    J Electrochem Soc; 2018; 165(12):G3071-G3073. PubMed ID: 30197450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Dynamics of Adsorbed Dopamine on Solvated Carbon Nanotubes and in a CNT Groove.
    Jia Q; Venton BJ; DuBay KH
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanofiber electrode for neurochemical monitoring.
    Zhang DA; Rand E; Marsh M; Andrews RJ; Lee KH; Meyyappan M; Koehne JE
    Mol Neurobiol; 2013 Oct; 48(2):380-5. PubMed ID: 23975638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection.
    Mohanaraj S; Wonnenberg P; Cohen B; Zhao H; Hartings MR; Zou S; Fox DM; Zestos AG
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.
    Yang C; Denno ME; Pyakurel P; Venton BJ
    Anal Chim Acta; 2015 Aug; 887():17-37. PubMed ID: 26320782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity.
    Viet NX; Kishimoto S; Ohno Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing.
    Nishimoto R; Sato Y; Wu J; Saizaki T; Kubo M; Wang M; Abe H; Richard I; Yoshinobu T; Sorin F; Guo Y
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-fiber microelectrodes for in vivo applications.
    Huffman ML; Venton BJ
    Analyst; 2009 Jan; 134(1):18-24. PubMed ID: 19082168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile fabrication of AgNPs/(PVA/PEI) nanofibers: high electrochemical efficiency and durability for biosensors.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Wang L; Fu Y; Yao J
    Biosens Bioelectron; 2013 Nov; 49():210-5. PubMed ID: 23764942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.