These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 25117552)

  • 1. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.
    Mwangi B; Soares JC; Hasan KM
    J Neurosci Methods; 2014 Oct; 236():19-25. PubMed ID: 25117552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach.
    Lavagnino L; Amianto F; Mwangi B; D'Agata F; Spalatro A; Zunta-Soares GB; Abbate Daga G; Mortara P; Fassino S; Soares JC
    Psychol Med; 2015 Oct; 45(13):2805-12. PubMed ID: 25990697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.
    Wu MJ; Mwangi B; Bauer IE; Passos IC; Sanches M; Zunta-Soares GB; Meyer TD; Hasan KM; Soares JC
    Neuroimage; 2017 Jan; 145(Pt B):254-264. PubMed ID: 26883067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data.
    Batta I; Abrol A; Calhoun VD;
    J Neurosci Methods; 2024 Jun; 406():110109. PubMed ID: 38494061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases.
    Tulay EE; Metin B; Tarhan N; Arıkan MK
    Clin EEG Neurosci; 2019 Jan; 50(1):20-33. PubMed ID: 29925268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data.
    Cheng L; Karkhanis P; Gokbag B; Liu Y; Li L
    PLoS Comput Biol; 2022 Apr; 18(4):e1008885. PubMed ID: 35404970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for fMRI data analysis based on the combination of sparse approximation and affinity propagation clustering.
    Ren T; Zeng W; Wang N; Chen L; Wang C
    Magn Reson Imaging; 2014 Jul; 32(6):736-46. PubMed ID: 24721006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster tendency assessment in neuronal spike data.
    Mahallati S; Bezdek JC; Popovic MR; Valiante TA
    PLoS One; 2019; 14(11):e0224547. PubMed ID: 31714913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy.
    Salvatore C; Cerasa A; Castiglioni I; Gallivanone F; Augimeri A; Lopez M; Arabia G; Morelli M; Gilardi MC; Quattrone A
    J Neurosci Methods; 2014 Jan; 222():230-7. PubMed ID: 24286700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Use of
    Oliveira FHM; Machado ARP; Andrade AO
    Comput Math Methods Med; 2018; 2018():8019232. PubMed ID: 30532798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and classification techniques.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014 Jul; 115(3):119-34. PubMed ID: 24821400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps.
    Rasmussen PM; Madsen KH; Lund TE; Hansen LK
    Neuroimage; 2011 Apr; 55(3):1120-31. PubMed ID: 21168511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive mean-shift framework for MRI brain segmentation.
    Mayer A; Greenspan H
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1238-50. PubMed ID: 19211339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets.
    Panta SR; Wang R; Fries J; Kalyanam R; Speer N; Banich M; Kiehl K; King M; Milham M; Wager TD; Turner JA; Plis SM; Calhoun VD
    Front Neuroinform; 2016; 10():9. PubMed ID: 27014049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linked independent component analysis for multimodal data fusion.
    Groves AR; Beckmann CF; Smith SM; Woolrich MW
    Neuroimage; 2011 Feb; 54(3):2198-217. PubMed ID: 20932919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis.
    Liu Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering fMRI data with a robust unsupervised learning algorithm for neuroscience data mining.
    Aljobouri HK; Jaber HA; Koçak OM; Algin O; Çankaya I
    J Neurosci Methods; 2018 Apr; 299():45-54. PubMed ID: 29471065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Global t-SNE to Preserve Intercluster Data Structure.
    Zhou Y; Sharpee TO
    Neural Comput; 2022 Jul; 34(8):1637-1651. PubMed ID: 35798323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-enhanced clustering and competitive learning algorithms.
    Osoba O; Kosko B
    Neural Netw; 2013 Jan; 37():132-40. PubMed ID: 23137615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.