BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25117691)

  • 1. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury.
    Yu X; Koretsky AP
    Brain Connect; 2014 Nov; 4(9):709-17. PubMed ID: 25117691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover.
    Petrus E; Dembling S; Usdin T; Isaac JTR; Koretsky AP
    J Neurosci; 2020 Sep; 40(40):7714-7723. PubMed ID: 32913109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral nerve injury induces immediate increases in layer v neuronal activity.
    Han Y; Li N; Zeiler SR; Pelled G
    Neurorehabil Neural Repair; 2013 Sep; 27(7):664-72. PubMed ID: 23599222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb.
    DeCosta-Fortune TM; Ramshur JT; Li CX; de Jongh Curry A; Pellicer-Morata V; Wang L; Waters RS
    Brain Res; 2020 Apr; 1732():146694. PubMed ID: 32017899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients.
    Fabri M; Polonara G; Mascioli G; Paggi A; Salvolini U; Manzoni T
    Eur J Neurosci; 2006 Jun; 23(11):3139-48. PubMed ID: 16820004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of GABA
    Kokinovic B; Medini P
    J Physiol; 2018 May; 596(10):1949-1964. PubMed ID: 29508394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normalized activation in the somatosensory cortex 30 years following nerve repair in children: an fMRI study.
    Chemnitz A; Weibull A; Rosén B; Andersson G; Dahlin LB; Björkman A
    Eur J Neurosci; 2015 Aug; 42(4):2022-7. PubMed ID: 25865600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation.
    Pelled G; Chuang KH; Dodd SJ; Koretsky AP
    Neuroimage; 2007 Aug; 37(1):262-73. PubMed ID: 17544301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.
    Koralek KA; Killackey HP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1396-400. PubMed ID: 2304906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation.
    Jung P; Klein JC; Wibral M; Hoechstetter K; Bliem B; Lu MK; Wahl M; Ziemann U
    J Neurosci; 2012 Apr; 32(16):5667-77. PubMed ID: 22514328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminal Arbors of Callosal Axons Undergo Plastic Changes in Early-Amputated Rats.
    Bahia CP; Vianna-Barbosa RJ; Tovar-Moll F; Lent R
    Cereb Cortex; 2019 Apr; 29(4):1460-1472. PubMed ID: 30873555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical lateralization of cheirosensory processing in callosal dysgenesis.
    Monteiro M; de Oliveira-Souza R; Andrade J; Marins T; de Carvalho Rodrigues E; Bramati I; Lent R; Moll J; Tovar-Moll F
    Neuroimage Clin; 2019; 23():101808. PubMed ID: 31153001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interhemispheric plasticity is mediated by maximal potentiation of callosal inputs.
    Petrus E; Saar G; Ma Z; Dodd S; Isaac JTR; Koretsky AP
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6391-6396. PubMed ID: 30846552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immature cortex lesions alter retinotopic maps and interhemispheric connections.
    Restrepo CE; Manger PR; Spenger C; Innocenti GM
    Ann Neurol; 2003 Jul; 54(1):51-65. PubMed ID: 12838520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-hemispheric plasticity in patients with median nerve injury.
    Fornander L; Nyman T; Hansson T; Brismar T; Engström M
    Neurosci Lett; 2016 Aug; 628():59-66. PubMed ID: 27291455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal interhemispheric motor interactions in patients with callosal agenesis.
    Genç E; Ocklenburg S; Singer W; Güntürkün O
    Behav Brain Res; 2015 Oct; 293():1-9. PubMed ID: 26187690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures.
    Vuong J; Henderson AK; Tuor UI; Dunn JF; Teskey GC
    Epilepsia; 2011 Dec; 52(12):2285-92. PubMed ID: 22091536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamocortical inputs show post-critical-period plasticity.
    Yu X; Chung S; Chen DY; Wang S; Dodd SJ; Walters JR; Isaac JT; Koretsky AP
    Neuron; 2012 May; 74(4):731-42. PubMed ID: 22632730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI.
    Chan KC; Fan SJ; Chan RW; Cheng JS; Zhou IY; Wu EX
    Neuroimage; 2014 Apr; 90():235-45. PubMed ID: 24394694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.