These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25118239)

  • 21. Biochemistry of complex glycan depolymerisation by the human gut microbiota.
    Ndeh D; Gilbert HJ
    FEMS Microbiol Rev; 2018 Mar; 42(2):146-164. PubMed ID: 29325042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Gut microbiota and digestion of polysaccharides].
    El Kaoutari A; Armougom F; Raoult D; Henrissat B
    Med Sci (Paris); 2014 Mar; 30(3):259-65. PubMed ID: 24685216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbohydrates and the human gut microbiota.
    Chassard C; Lacroix C
    Curr Opin Clin Nutr Metab Care; 2013 Jul; 16(4):453-60. PubMed ID: 23719143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism.
    Duffy LC; Raiten DJ; Hubbard VS; Starke-Reed P
    J Nutr; 2015 May; 145(5):1123S-1130S. PubMed ID: 25833886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.
    Martínez-del Campo A; Bodea S; Hamer HA; Marks JA; Haiser HJ; Turnbaugh PJ; Balskus EP
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary Fatty Acids Sustain the Growth of the Human Gut Microbiota.
    Agans R; Gordon A; Kramer DL; Perez-Burillo S; Rufián-Henares JA; Paliy O
    Appl Environ Microbiol; 2018 Nov; 84(21):. PubMed ID: 30242004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components.
    Lordan C; Thapa D; Ross RP; Cotter PD
    Gut Microbes; 2020; 11(1):1-20. PubMed ID: 31116628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diet effects in gut microbiome and obesity.
    Chen J; He X; Huang J
    J Food Sci; 2014 Apr; 79(4):R442-51. PubMed ID: 24621052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species.
    Belcour A; Frioux C; Aite M; Bretaudeau A; Hildebrand F; Siegel A
    Elife; 2020 Dec; 9():. PubMed ID: 33372654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycan processing in gut microbiomes.
    La Rosa SL; Ostrowski MP; Vera-Ponce de León A; McKee LS; Larsbrink J; Eijsink VG; Lowe EC; Martens EC; Pope PB
    Curr Opin Microbiol; 2022 Jun; 67():102143. PubMed ID: 35338908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studying the human gut microbiota in the trans-omics era--focus on metagenomics and metabonomics.
    Tuohy KM; Gougoulias C; Shen Q; Walton G; Fava F; Ramnani P
    Curr Pharm Des; 2009; 15(13):1415-27. PubMed ID: 19442166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feeding strategy shapes gut metagenomic enrichment and functional specialization in captive lemurs.
    McKenney EA; O'Connell TM; Rodrigo A; Yoder AD
    Gut Microbes; 2018; 9(3):202-217. PubMed ID: 29182421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.
    Liu X; Cao S; Zhang X
    J Agric Food Chem; 2015 Sep; 63(36):7885-95. PubMed ID: 26306709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome.
    Van den Abbeele P; Verstraete W; El Aidy S; Geirnaert A; Van de Wiele T
    Microb Biotechnol; 2013 Jul; 6(4):335-40. PubMed ID: 23594389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.
    Clark A; Mach N
    J Int Soc Sports Nutr; 2016; 13():43. PubMed ID: 27924137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.
    Wong S; Stephens WZ; Burns AR; Stagaman K; David LA; Bohannan BJ; Guillemin K; Rawls JF
    mBio; 2015 Sep; 6(5):e00687-15. PubMed ID: 26419876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'The way to a man's heart is through his gut microbiota'--dietary pro- and prebiotics for the management of cardiovascular risk.
    Tuohy KM; Fava F; Viola R
    Proc Nutr Soc; 2014 May; 73(2):172-85. PubMed ID: 24495527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards predictive models of the human gut microbiome.
    Bucci V; Xavier JB
    J Mol Biol; 2014 Nov; 426(23):3907-16. PubMed ID: 24727124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of nutrition on the human microbiome.
    Flint HJ
    Nutr Rev; 2012 Aug; 70 Suppl 1():S10-3. PubMed ID: 22861801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria.
    Pudlo NA; Urs K; Crawford R; Pirani A; Atherly T; Jimenez R; Terrapon N; Henrissat B; Peterson D; Ziemer C; Snitkin E; Martens EC
    mSystems; 2022 Feb; 7(1):e0094721. PubMed ID: 35166563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.