BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25118818)

  • 21. Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid.
    Chen G; Niu CH; Zhou MY; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):168-75. PubMed ID: 20018293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid).
    Huo D; Li Y; Qian Q; Kobayashi T
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):36-42. PubMed ID: 16698239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid).
    Nigro V; Angelini R; Rosi B; Bertoldo M; Buratti E; Casciardi S; Sennato S; Ruzicka B
    J Colloid Interface Sci; 2019 Jun; 545():210-219. PubMed ID: 30889412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DEVELOPMENT OF OLANZAPINE LOADED PNA MICROGELS FOR DEPOT DRUG DELIVERY IN TREATMENT OF SCHIZOPHRENIA: IN VITRO AN IN VIVO RELEASE PROFILE.
    Pervaiz F; Ahmad M; Hussain T; Idrees A; Yaqoob A; Abbas K
    Acta Pol Pharm; 2016; 73(1):175-81. PubMed ID: 27008812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled and triggered small molecule release from a confined polymer film.
    Gao Y; Zago GP; Jia Z; Serpe MJ
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9803-8. PubMed ID: 24063561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs.
    Town AR; Giardiello M; Gurjar R; Siccardi M; Briggs ME; Akhtar R; McDonald TO
    Nanoscale; 2017 May; 9(19):6302-6314. PubMed ID: 28368063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of pH in Synthesis of pH-Responsive Cationic Nano- and Microgels.
    Annegarn M; Dirksen M; Hellweg T
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure.
    Mou CL; Ju XJ; Zhang L; Xie R; Wang W; Deng NN; Wei J; Chen Q; Chu LY
    Langmuir; 2014 Feb; 30(5):1455-64. PubMed ID: 24437526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable uptake/release mechanism of protein microgel particles in biomimicking environment.
    Pepe A; Podesva P; Simone G
    Sci Rep; 2017 Jul; 7(1):6014. PubMed ID: 28729713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly (N-isopropylacrylamide)-co-(acrylic acid) microgel/Ag nanoparticle hybrids for the colorimetric sensing of H2O2.
    Han DM; Zhang QM; Serpe MJ
    Nanoscale; 2015 Feb; 7(6):2784-9. PubMed ID: 25584531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of serum protein adsorption in PEGylated PNIPAm microgels.
    Trongsatitkul T; Budhlall BM
    Colloids Surf B Biointerfaces; 2013 Mar; 103():244-52. PubMed ID: 23201744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system.
    Xiong W; Gao X; Zhao Y; Xu H; Yang X
    Colloids Surf B Biointerfaces; 2011 May; 84(1):103-10. PubMed ID: 21227660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystallization behavior of soft, attractive microgels.
    Meng Z; Cho JK; Debord S; Breedveld V; Lyon LA
    J Phys Chem B; 2007 Jun; 111(25):6992-7. PubMed ID: 17536855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designed glucose-responsive microgels with selective shrinking behavior.
    Ancla C; Lapeyre V; Gosse I; Catargi B; Ravaine V
    Langmuir; 2011 Oct; 27(20):12693-701. PubMed ID: 21892832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucosamine-carrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies.
    Teng D; Hou J; Zhang X; Wang X; Wang Z; Li C
    J Colloid Interface Sci; 2008 Jun; 322(1):333-41. PubMed ID: 18417145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands.
    Phan-Xuan T; Durand D; Nicolai T; Donato L; Schmitt C; Bovetto L
    Langmuir; 2011 Dec; 27(24):15092-101. PubMed ID: 22054054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uptake and distribution of labeled antibodies into pH-sensitive microgels.
    Blasi L; Argentiere S; Morello G; Palamà I; Barbarella G; Cingolani R; Gigli G
    Acta Biomater; 2010 Jun; 6(6):2148-56. PubMed ID: 20026438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high temperatures.
    Hyatt JS; Do C; Hu X; Choi HS; Kim JW; Lyon LA; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):030302. PubMed ID: 26465408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles.
    Khan A
    J Colloid Interface Sci; 2007 Sep; 313(2):697-704. PubMed ID: 17561067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of microgel morphology on functionalized microgel-drug interactions.
    Hoare T; Pelton R
    Langmuir; 2008 Feb; 24(3):1005-12. PubMed ID: 18179266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.