These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 25118974)
1. Flexible graphene-graphene composites of superior thermal and electrical transport properties. Hou ZL; Song WL; Wang P; Meziani MJ; Kong CY; Anderson A; Maimaiti H; LeCroy GE; Qian H; Sun YP ACS Appl Mater Interfaces; 2014 Sep; 6(17):15026-32. PubMed ID: 25118974 [TBL] [Abstract][Full Text] [Related]
2. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides. Chen Q; Yan X; Wu L; Xiao Y; Wang S; Cheng G; Zheng R; Hao Q ACS Appl Mater Interfaces; 2021 Feb; 13(4):5435-5444. PubMed ID: 33492119 [TBL] [Abstract][Full Text] [Related]
3. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. Ha HW; Choudhury A; Kamal T; Kim DH; Park SY ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645 [TBL] [Abstract][Full Text] [Related]
4. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials. Tian L; Anilkumar P; Cao L; Kong CY; Meziani MJ; Qian H; Veca LM; Thorne TJ; Tackett KN; Edwards T; Sun YP ACS Nano; 2011 Apr; 5(4):3052-8. PubMed ID: 21405144 [TBL] [Abstract][Full Text] [Related]
6. Flexible Graphene Nanocomposites with Simultaneous Highly Anisotropic Thermal and Electrical Conductivities Prepared by Engineered Graphene with Flat Morphology. Zhuang Y; Zheng K; Cao X; Fan Q; Ye G; Lu J; Zhang J; Ma Y ACS Nano; 2020 Sep; 14(9):11733-11742. PubMed ID: 32865991 [TBL] [Abstract][Full Text] [Related]
7. Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Pawar SP; Stephen S; Bose S; Mittal V Phys Chem Chem Phys; 2015 Jun; 17(22):14922-30. PubMed ID: 25981455 [TBL] [Abstract][Full Text] [Related]
8. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Ding J; Ur Rahman O; Zhao H; Peng W; Dou H; Chen H; Yu H Nanotechnology; 2017 Sep; 28(39):39LT01. PubMed ID: 28731426 [TBL] [Abstract][Full Text] [Related]
9. Highly Thermally Conductive Fluorinated Graphene Films with Superior Electrical Insulation and Mechanical Flexibility. Wang X; Wu P ACS Appl Mater Interfaces; 2019 Jun; 11(24):21946-21954. PubMed ID: 31134789 [TBL] [Abstract][Full Text] [Related]
10. Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity. Zou R; Liu F; Hu N; Ning H; Gong Y; Wang S; Huang K; Jiang X; Xu C; Fu S; Li Y; Yan C ACS Appl Mater Interfaces; 2020 Dec; 12(51):57391-57400. PubMed ID: 33301313 [TBL] [Abstract][Full Text] [Related]
11. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets. Hsiao MC; Ma CC; Chiang JC; Ho KK; Chou TY; Xie X; Tsai CH; Chang LH; Hsieh CK Nanoscale; 2013 Jul; 5(13):5863-71. PubMed ID: 23695448 [TBL] [Abstract][Full Text] [Related]
12. Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits. Peng Y; Lei J Nanoscale Res Lett; 2014; 9(1):617. PubMed ID: 25593547 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure. Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677 [TBL] [Abstract][Full Text] [Related]
14. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications. Chen D; Zhao Y; Chen Y; Wang B; Chen H; Zhou J; Liang Z ACS Appl Mater Interfaces; 2015 Feb; 7(5):3224-30. PubMed ID: 25607423 [TBL] [Abstract][Full Text] [Related]
15. Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene. Cunningham G; Lotya M; McEvoy N; Duesberg GS; van der Schoot P; Coleman JN Nanoscale; 2012 Oct; 4(20):6260-4. PubMed ID: 22961125 [TBL] [Abstract][Full Text] [Related]
16. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Schwamb T; Burg BR; Schirmer NC; Poulikakos D Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity. Huang SY; Zhao B; Zhang K; Yuen MM; Xu JB; Fu XZ; Sun R; Wong CP Sci Rep; 2015 Sep; 5():14260. PubMed ID: 26404674 [TBL] [Abstract][Full Text] [Related]
18. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514 [TBL] [Abstract][Full Text] [Related]
19. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. Wan D; Yang C; Lin T; Tang Y; Zhou M; Zhong Y; Huang F; Lin J ACS Nano; 2012 Oct; 6(10):9068-78. PubMed ID: 22984901 [TBL] [Abstract][Full Text] [Related]
20. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. Yu C; Choi K; Yin L; Grunlan JC ACS Nano; 2011 Oct; 5(10):7885-92. PubMed ID: 21899362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]