BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25119506)

  • 1. Unified theory on the pathogenesis of Randall's plaques and plugs.
    Khan SR; Canales BK
    Urolithiasis; 2015 Jan; 43 Suppl 1(0 1):109-23. PubMed ID: 25119506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do stones form? Is unification of theories on stone formation possible?
    Bird VY; Khan SR
    Arch Esp Urol; 2017 Jan; 70(1):12-27. PubMed ID: 28221139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.
    Robertson WG
    Urolithiasis; 2015 Jan; 43 Suppl 1():93-107. PubMed ID: 25407799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibrils and cell nuclei are entrapped within Randall's plaques but not in CaOx matrix overgrowth: A microscopic inquiry into Randall's plaque stone pathogenesis.
    Canela VH; Bledsoe SB; Worcester EM; Lingeman JE; El-Achkar TM; Williams JC
    Anat Rec (Hoboken); 2022 Jul; 305(7):1701-1711. PubMed ID: 34825513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall's plaque.
    O'Kell AL; Lovett AC; Canales BK; Gower LB; Khan SR
    Urolithiasis; 2019 Aug; 47(4):335-346. PubMed ID: 30218116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Randall's plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation.
    Chidambaram A; Rodriguez D; Khan S; Gower L
    Urolithiasis; 2015 Jan; 43 Suppl 1(0 1):77-92. PubMed ID: 25119505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis.
    Khan SR
    Transl Androl Urol; 2014 Sep; 3(3):256-276. PubMed ID: 25383321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation.
    Khan SR; Canales BK; Dominguez-Gutierrez PR
    Nat Rev Nephrol; 2021 Jun; 17(6):417-433. PubMed ID: 33514941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a two-stage in vitro model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 1-biomimetic Randall's plaque using decellularized porcine kidneys.
    Lovett AC; Khan SR; Gower LB
    Urolithiasis; 2019 Aug; 47(4):321-334. PubMed ID: 29777258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continuum of mineralization from human renal pyramid to stones on stems.
    Sherer BA; Chen L; Kang M; Shimotake AR; Wiener SV; Chi T; Stoller ML; Ho SP
    Acta Biomater; 2018 Apr; 71():72-85. PubMed ID: 29428569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Randall plaques on kidney stone formation.
    Chung HJ
    Transl Androl Urol; 2014 Sep; 3(3):251-4. PubMed ID: 26816774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randall's plaque as the origin of calcium oxalate kidney stones.
    Daudon M; Bazin D; Letavernier E
    Urolithiasis; 2015 Jan; 43 Suppl 1():5-11. PubMed ID: 25098906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of formation of human calcium oxalate renal stones on Randall's plaque.
    Evan AP; Coe FL; Lingeman JE; Shao Y; Sommer AJ; Bledsoe SB; Anderson JC; Worcester EM
    Anat Rec (Hoboken); 2007 Oct; 290(10):1315-23. PubMed ID: 17724713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological aspects of the "fixed-particle" model of stone formation: animal studies.
    Khan SR
    Urolithiasis; 2017 Feb; 45(1):75-87. PubMed ID: 27896391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of endoscopic lesions of the renal papilla with type of renal stone and 24 h urine analysis.
    Sabaté Arroyo XA; Grases Freixedas F; Bauzà Quetglas JL; Guimerà Garcia J; Pieras Ayala E
    BMC Urol; 2020 Apr; 20(1):46. PubMed ID: 32334600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do "inhibitors of crystallisation" play any role in the prevention of kidney stones? A critique.
    Robertson WG
    Urolithiasis; 2017 Feb; 45(1):43-56. PubMed ID: 27900407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and urinary risk factors associated with Randall's papillary plaques.
    Low RK; Stoller ML; Schreiber CK
    J Endourol; 2000 Aug; 14(6):507-10. PubMed ID: 10954308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origins of urinary stone disease: upstream mineral formations initiate downstream Randall's plaque.
    Hsi RS; Ramaswamy K; Ho SP; Stoller ML
    BJU Int; 2017 Jan; 119(1):177-184. PubMed ID: 27306864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endoscopic mapping of renal papillae for Randall's plaques in patients with urinary stone disease.
    Low RK; Stoller ML
    J Urol; 1997 Dec; 158(6):2062-4. PubMed ID: 9366312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ flow cell platform for examining calcium oxalate and calcium phosphate crystallization on films of basement membrane extract in the presence of urinary 'inhibitors'.
    Kuliasha CA; Rodriguez D; Lovett A; Gower LB
    CrystEngComm; 2020 Feb; 22(8):1448-1458. PubMed ID: 32256199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.