These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25119522)

  • 1. 5'-Guanosine monophosphate mediated biocompatible porous hydrogel of β-FeOOH-viscoelastic behavior, loading, and release capabilities of freeze-dried gel.
    Kumar A; Gupta SK
    J Phys Chem B; 2014 Sep; 118(35):10543-51. PubMed ID: 25119522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications.
    Xuan S; Wang F; Lai JM; Sham KW; Wang YX; Lee SF; Yu JC; Cheng CH; Leung KC
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):237-44. PubMed ID: 21229966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 5'-GMP-mediated porous hydrogel containing β-FeOOH nanostructures: optimization of its morphology, optical and magnetic properties.
    Kumar A; Gupta SK
    J Mater Chem B; 2013 Nov; 1(42):5818-5830. PubMed ID: 32261239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-structured smart hydrogels with enhanced protein loading and release efficiency.
    Zhang JT; Petersen S; Thunga M; Leipold E; Weidisch R; Liu X; Fahr A; Jandt KD
    Acta Biomater; 2010 Apr; 6(4):1297-306. PubMed ID: 19913647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcumin/xanthan-galactomannan hydrogels: rheological analysis and biocompatibility.
    Da-Lozzo EJ; Moledo RC; Faraco CD; Ortolani-Machado CF; Bresolin TM; Silveira JL
    Carbohydr Polym; 2013 Mar; 93(1):279-84. PubMed ID: 23465931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids.
    Lakehal I; Montembault A; David L; Perrier A; Vibert R; Duclaux L; Reinert L
    Int J Biol Macromol; 2019 May; 129():68-77. PubMed ID: 30716370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(hydroxyethyl methacrylate-co-methacrylated-beta-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties.
    dos Santos JF; Couceiro R; Concheiro A; Torres-Labandeira JJ; Alvarez-Lorenzo C
    Acta Biomater; 2008 May; 4(3):745-55. PubMed ID: 18291738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and topographic effects on calcification tendency of pHEMA hydrogels.
    Lou X; Vijayasekaran S; Sugiharti R; Robertson T
    Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior.
    Hu X; Gong X
    J Colloid Interface Sci; 2016 May; 470():62-70. PubMed ID: 26930541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release.
    Paukkonen H; Kunnari M; Laurén P; Hakkarainen T; Auvinen VV; Oksanen T; Koivuniemi R; Yliperttula M; Laaksonen T
    Int J Pharm; 2017 Oct; 532(1):269-280. PubMed ID: 28888974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of thermo- and pH-sensitive poly(vinyl alcohol)/poly(N, N-diethylacrylamide-co-itaconic acid) semi-IPN hydrogels.
    Zhang N; Shen Y; Li X; Cai S; Liu M
    Biomed Mater; 2012 Jun; 7(3):035014. PubMed ID: 22493167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swelling response of radiation synthesized 2-hydroxyethylmethacrylate-co-[2-(methacryloyloxy)ethyl] trimethylammonium chloride hydrogels under various in vitro conditions.
    Goel NK; Kumar V; Bhardwaj YK; Chaudhari CV; Dubey KA; Sabharwal S
    J Biomater Sci Polym Ed; 2009; 20(5-6):785-805. PubMed ID: 19323890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate.
    Kim MS; Choi YJ; Noh I; Tae G
    J Biomed Mater Res A; 2007 Dec; 83(3):674-82. PubMed ID: 17530630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation.
    Hu X; Li D; Gao C
    Biotechnol J; 2011 Nov; 6(11):1388-96. PubMed ID: 21751389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistimulus-Responsive Supramolecular Hydrogels Derived by
    Priyanka ; Kumar A
    ACS Omega; 2020 Jun; 5(23):13672-13684. PubMed ID: 32566832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxyl enriched monodisperse porous Fe3O4 nanoparticles with extraordinary sustained-release property.
    Liu X; Hu Q; Fang Z; Wu Q; Xie Q
    Langmuir; 2009 Jul; 25(13):7244-8. PubMed ID: 19507833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery.
    Bardajee GR; Hooshyar Z
    Carbohydr Polym; 2014 Jan; 101():741-51. PubMed ID: 24299834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV.
    Zhang Q; Chen L; Dong Y; Lu S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1616-22. PubMed ID: 23827615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry.
    Rashad A; Mustafa K; Heggset EB; Syverud K
    Biomacromolecules; 2017 Apr; 18(4):1238-1248. PubMed ID: 28263573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.