These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 25119974)
1. Bromide: a pressing issue to address in China's shale gas extraction. Shi M; Huang D; Zhao G; Li R; Zheng J Environ Sci Technol; 2014 Sep; 48(17):9971-2. PubMed ID: 25119974 [No Abstract] [Full Text] [Related]
2. A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region. Hildenbrand ZL; Carlton DD; Fontenot BE; Meik JM; Walton JL; Taylor JT; Thacker JB; Korlie S; Shelor CP; Henderson D; Kadjo AF; Roelke CE; Hudak PF; Burton T; Rifai HS; Schug KA Environ Sci Technol; 2015 Jul; 49(13):8254-62. PubMed ID: 26079990 [TBL] [Abstract][Full Text] [Related]
3. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Warner NR; Christie CA; Jackson RB; Vengosh A Environ Sci Technol; 2013 Oct; 47(20):11849-57. PubMed ID: 24087919 [TBL] [Abstract][Full Text] [Related]
4. U.S. Shale Gas versus China's Coal as Chemical Feedstock. Yang CJ Environ Sci Technol; 2015 Aug; 49(16):9501-2. PubMed ID: 26250647 [No Abstract] [Full Text] [Related]
5. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies. Parker KM; Zeng T; Harkness J; Vengosh A; Mitch WA Environ Sci Technol; 2014 Oct; 48(19):11161-9. PubMed ID: 25203743 [TBL] [Abstract][Full Text] [Related]
6. Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania. Ferrar KJ; Michanowicz DR; Christen CL; Mulcahy N; Malone SL; Sharma RK Environ Sci Technol; 2013 Apr; 47(7):3472-81. PubMed ID: 23458378 [TBL] [Abstract][Full Text] [Related]
7. Impacts of shale gas production wastewater on disinfection byproduct formation: An investigation from a non-bromide perspective. Huang KZ; Tang HL; Xie YF Water Res; 2018 Nov; 144():656-664. PubMed ID: 30096691 [TBL] [Abstract][Full Text] [Related]
8. Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange. Flury S; Glud RN; Premke K; McGinnis DF Environ Sci Technol; 2015 Sep; 49(17):10413-20. PubMed ID: 26214174 [TBL] [Abstract][Full Text] [Related]
9. Highly Efficient Bromide Removal from Shale Gas Produced Water by Unactivated Peroxymonosulfate for Controlling Disinfection Byproduct Formation in Impacted Water Supplies. Huang KZ; Zhang H Environ Sci Technol; 2020 Apr; 54(8):5186-5196. PubMed ID: 32202106 [TBL] [Abstract][Full Text] [Related]
10. Accumulation and Risk of Triclosan in Surface Sediments Near the Outfalls of Municipal Wastewater Treatment Plants. Chen L; Wang Z; Jing Z; Wang Z; Cao S; Yu T Bull Environ Contam Toxicol; 2015 Oct; 95(4):525-9. PubMed ID: 26271613 [TBL] [Abstract][Full Text] [Related]
11. Selective oxidation of bromide in wastewater brines from hydraulic fracturing. Sun M; Lowry GV; Gregory KB Water Res; 2013 Jul; 47(11):3723-31. PubMed ID: 23726709 [TBL] [Abstract][Full Text] [Related]
12. Formation and toxicity of halogenated disinfection byproducts resulting from linear alkylbenzene sulfonates. Gong T; Zhang X; Li Y; Xian Q Chemosphere; 2016 Apr; 149():70-5. PubMed ID: 26849197 [TBL] [Abstract][Full Text] [Related]
13. Hekla cold springs (Iceland): groundwater mixing with magmatic gases. Holm NG; Gislason SR; Sturkell E; Torssander P Isotopes Environ Health Stud; 2010 Jun; 46(2):180-9. PubMed ID: 20582787 [TBL] [Abstract][Full Text] [Related]
14. Occurrence, distribution, and multi-phase partitioning of triclocarban and triclosan in an urban river receiving wastewater treatment plants effluent in China. Wang XK; Jiang XJ; Wang YN; Sun J; Wang C; Shen TT Environ Sci Pollut Res Int; 2014; 21(11):7065-74. PubMed ID: 24535666 [TBL] [Abstract][Full Text] [Related]
15. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Harkness JS; Dwyer GS; Warner NR; Parker KM; Mitch WA; Vengosh A Environ Sci Technol; 2015 Feb; 49(3):1955-63. PubMed ID: 25587644 [TBL] [Abstract][Full Text] [Related]
16. A chemometric approach to the investigation of major and minor ion chemistry in Lake Como (Lombardia, Northern Italy. Giussani B; Dossi C; Monticelli D; Pozzi A; Recchia S Ann Chim; 2006; 96(5-6):339-46. PubMed ID: 16856763 [TBL] [Abstract][Full Text] [Related]
17. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA. Landis MS; Kamal AS; Kovalcik KD; Croghan C; Norris GA; Bergdale A Sci Total Environ; 2016 Jan; 542(Pt A):505-20. PubMed ID: 26520274 [TBL] [Abstract][Full Text] [Related]
18. Assessment of heavy metal contamination in the surface sediments: A reexamination into the offshore environment in China. Chen H; Wang J; Chen J; Lin H; Lin C Mar Pollut Bull; 2016 Dec; 113(1-2):132-140. PubMed ID: 27600270 [TBL] [Abstract][Full Text] [Related]
19. Water use for shale gas extraction in the Sichuan Basin, China. Wang J; Liu M; Bentley Y; Feng L; Zhang C J Environ Manage; 2018 Nov; 226():13-21. PubMed ID: 30103199 [TBL] [Abstract][Full Text] [Related]
20. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Wang H; Wang C; Wu W; Mo Z; Wang Z Chemosphere; 2003 Jan; 50(4):557-62. PubMed ID: 12685755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]