BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25120162)

  • 1. Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms.
    Lee JS; Heo J; Lee WK; Lim YG; Kim YH; Park KS
    Sensors (Basel); 2014 Aug; 14(8):14732-43. PubMed ID: 25120162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of conductive fabric sensor and Ag-AgCI sensor under motion artifacts.
    Lee IB; Shin SC; Jang YW; Song YS; Jeong JW; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1300-3. PubMed ID: 19162905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time digitally assisted analog motion artifact reduction in ambulatory ECG monitoring system.
    Kim S; Kim H; Van Helleputte N; Van Hoof C; Yazicioglu RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2096-9. PubMed ID: 23366334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel dry electrodes for ECG monitoring.
    Gruetzmann A; Hansen S; Müller J
    Physiol Meas; 2007 Nov; 28(11):1375-90. PubMed ID: 17978422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system.
    Komensky T; Jurcisin M; Ruman K; Kovac O; Laqua D; Husar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1594-7. PubMed ID: 23366210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion artifacts in capacitive ECG measurements: reducing the combined effect of DC voltages and capacitance changes using an injection signal.
    Serteyn A; Vullings R; Meftah M; Bergmans JW
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):264-73. PubMed ID: 25137720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an injection signal to reduce motion artifacts in capacitive ECG measurements.
    Serteyn A; Vullings R; Meftah M; Bergmans J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4795-8. PubMed ID: 24110807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous Heart Rate detection using short-time autocorrelation for wearable healthcare systems.
    Nakano M; Konishi T; Izumi S; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6703-6. PubMed ID: 23367467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode Humidification Design for Artifact Reduction in Capacitive ECG Measurements.
    Tang Y; Chang R; Zhang L; Yan F; Ma H; Bu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes.
    Yama Y; Ueno A; Uchikawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5728-31. PubMed ID: 18003313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Stable Capacitive Electrocardiogram Measurement System.
    Chen CC; Lin SY; Chang WY
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wavelet Adaptive Cancellation Algorithm Based on Multi-Inertial Sensors for the Reduction of Motion Artifacts in Ambulatory ECGs.
    Xiong F; Chen D; Huang M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System for unconstrained ECG measurement on a toilet seat using capacitive coupled electrodes : the efficacy and practicality.
    Baek HJ; Kim JS; Kim KK; Park KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2326-8. PubMed ID: 19163167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.
    Lessard-Tremblay M; Weeks J; Morelli L; Cowan G; Gagnon G; Zednik RJ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32927651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.
    Ko BH; Lee T; Choi C; Kim YH; Park G; Kang K; Bae SK; Shin K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1590-3. PubMed ID: 23366209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Anti-motion Artifact Performance Test System for Ambulatory ECG Monitoring Equipment].
    Qin L; Wu Y; Xu K; Zhao X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):624-629. PubMed ID: 38086718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
    Wang Z; Wu B; Yin J; Gong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):941-7. PubMed ID: 23198439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function.
    Dai M; Xiao X; Chen X; Lin H; Wu W; Chen S
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):1029-1040. PubMed ID: 27743384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.
    Cho H; Lee JH
    J Med Syst; 2015 Sep; 39(9):95. PubMed ID: 26254250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion artifact suppression in the ECG signal by successive modifications in frequency and time.
    Subramaniam SR; Ling BW; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():425-8. PubMed ID: 24109714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.