These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25120162)

  • 1. Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms.
    Lee JS; Heo J; Lee WK; Lim YG; Kim YH; Park KS
    Sensors (Basel); 2014 Aug; 14(8):14732-43. PubMed ID: 25120162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of conductive fabric sensor and Ag-AgCI sensor under motion artifacts.
    Lee IB; Shin SC; Jang YW; Song YS; Jeong JW; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1300-3. PubMed ID: 19162905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time digitally assisted analog motion artifact reduction in ambulatory ECG monitoring system.
    Kim S; Kim H; Van Helleputte N; Van Hoof C; Yazicioglu RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2096-9. PubMed ID: 23366334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel dry electrodes for ECG monitoring.
    Gruetzmann A; Hansen S; Müller J
    Physiol Meas; 2007 Nov; 28(11):1375-90. PubMed ID: 17978422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system.
    Komensky T; Jurcisin M; Ruman K; Kovac O; Laqua D; Husar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1594-7. PubMed ID: 23366210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion artifacts in capacitive ECG measurements: reducing the combined effect of DC voltages and capacitance changes using an injection signal.
    Serteyn A; Vullings R; Meftah M; Bergmans JW
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):264-73. PubMed ID: 25137720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an injection signal to reduce motion artifacts in capacitive ECG measurements.
    Serteyn A; Vullings R; Meftah M; Bergmans J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4795-8. PubMed ID: 24110807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous Heart Rate detection using short-time autocorrelation for wearable healthcare systems.
    Nakano M; Konishi T; Izumi S; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6703-6. PubMed ID: 23367467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode Humidification Design for Artifact Reduction in Capacitive ECG Measurements.
    Tang Y; Chang R; Zhang L; Yan F; Ma H; Bu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes.
    Yama Y; Ueno A; Uchikawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5728-31. PubMed ID: 18003313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Stable Capacitive Electrocardiogram Measurement System.
    Chen CC; Lin SY; Chang WY
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wavelet Adaptive Cancellation Algorithm Based on Multi-Inertial Sensors for the Reduction of Motion Artifacts in Ambulatory ECGs.
    Xiong F; Chen D; Huang M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System for unconstrained ECG measurement on a toilet seat using capacitive coupled electrodes : the efficacy and practicality.
    Baek HJ; Kim JS; Kim KK; Park KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2326-8. PubMed ID: 19163167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.
    Lessard-Tremblay M; Weeks J; Morelli L; Cowan G; Gagnon G; Zednik RJ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32927651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.
    Ko BH; Lee T; Choi C; Kim YH; Park G; Kang K; Bae SK; Shin K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1590-3. PubMed ID: 23366209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Anti-motion Artifact Performance Test System for Ambulatory ECG Monitoring Equipment].
    Qin L; Wu Y; Xu K; Zhao X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):624-629. PubMed ID: 38086718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
    Wang Z; Wu B; Yin J; Gong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):941-7. PubMed ID: 23198439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function.
    Dai M; Xiao X; Chen X; Lin H; Wu W; Chen S
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):1029-1040. PubMed ID: 27743384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.
    Cho H; Lee JH
    J Med Syst; 2015 Sep; 39(9):95. PubMed ID: 26254250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion artifact suppression in the ECG signal by successive modifications in frequency and time.
    Subramaniam SR; Ling BW; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():425-8. PubMed ID: 24109714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.