BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25120436)

  • 1. Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse.
    Albrecht O; Dondzillo A; Mayer F; Thompson JA; Klug A
    Front Neural Circuits; 2014; 8():83. PubMed ID: 25120436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus).
    Dondzillo A; Thompson JA; Klug A
    PLoS One; 2016; 11(8):e0160241. PubMed ID: 27489949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycinergic inhibition to the medial nucleus of the trapezoid body shows prominent facilitation and can sustain high levels of ongoing activity.
    Mayer F; Albrecht O; Dondzillo A; Klug A
    J Neurophysiol; 2014 Dec; 112(11):2901-15. PubMed ID: 25185813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome.
    McCullagh EA; Salcedo E; Huntsman MM; Klug A
    J Comp Neurol; 2017 Nov; 525(16):3543-3562. PubMed ID: 28744893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory synapses in the developing auditory system are glutamatergic.
    Gillespie DC; Kim G; Kandler K
    Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and anatomical development of glycinergic inhibition in the mouse superior paraolivary nucleus following hearing onset.
    Rajaram E; Pagella S; Grothe B; Kopp-Scheinpflug C
    J Neurophysiol; 2020 Aug; 124(2):471-483. PubMed ID: 32667247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB.
    Altieri SC; Zhao T; Jalabi W; Maricich SM
    Front Neural Circuits; 2014; 8():109. PubMed ID: 25309335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat.
    Guinan JJ; Li RY
    Hear Res; 1990 Nov; 49(1-3):321-34. PubMed ID: 2292504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and functional continuum underlying heterogeneity in the spiking fidelity at the calyx of Held synapse in vitro.
    Grande G; Wang LY
    J Neurosci; 2011 Sep; 31(38):13386-99. PubMed ID: 21940432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtle differences in synaptic transmission in medial nucleus of trapezoid body neurons between wild-type and Fmr1 knockout mice.
    Lu Y
    Brain Res; 2019 Aug; 1717():95-103. PubMed ID: 31004576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.
    Kim SE; Lee SY; Blanco CL; Kim JH
    J Neurosci; 2014 Aug; 34(34):11399-404. PubMed ID: 25143619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory control at a synaptic relay.
    Awatramani GB; Turecek R; Trussell LO
    J Neurosci; 2004 Mar; 24(11):2643-7. PubMed ID: 15028756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relation of the developing calyx of Held synapse in vivo.
    Sierksma MC; Slotman JA; Houtsmuller AB; Borst JGG
    J Physiol; 2020 Oct; 598(20):4603-4619. PubMed ID: 33439501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive.
    Smith AJ; Owens S; Forsythe ID
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):681-98. PubMed ID: 11118498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.