BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 25120437)

  • 1. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.
    Ponnath A; Farris HE
    Front Neural Circuits; 2014; 8():85. PubMed ID: 25120437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdependence of spatial and temporal coding in the auditory midbrain.
    Koch U; Grothe B
    J Neurophysiol; 2000 Apr; 83(4):2300-14. PubMed ID: 10758135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.
    Scott BH; Malone BJ; Semple MN
    J Neurophysiol; 2009 Apr; 101(4):1781-99. PubMed ID: 19164111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duration tuning in the mouse auditory midbrain.
    Brand A; Urban R; Grothe B
    J Neurophysiol; 2000 Oct; 84(4):1790-9. PubMed ID: 11024071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial tuning to sound-source azimuth in the inferior colliculus of unanesthetized rabbit.
    Kuwada S; Bishop B; Alex C; Condit DW; Kim DO
    J Neurophysiol; 2011 Nov; 106(5):2698-708. PubMed ID: 21849611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse.
    Liu X; Yan Y; Wang Y; Yan J
    PLoS One; 2010 Nov; 5(11):e14038. PubMed ID: 21124980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex.
    Schönwiesner M; Krumbholz K; Rübsamen R; Fink GR; von Cramon DY
    Cereb Cortex; 2007 Feb; 17(2):492-9. PubMed ID: 16565292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory spatial tuning at the crossroads of the midbrain and forebrain.
    Pérez ML; Shanbhag SJ; Peña JL
    J Neurophysiol; 2009 Sep; 102(3):1472-82. PubMed ID: 19571193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory Competition and Coding of Relative Stimulus Strength across Midbrain Space Maps of Barn Owls.
    Bae AJ; Ferger R; Peña JL
    J Neurosci; 2024 May; 44(21):. PubMed ID: 38664010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of midbrain and thalamic space-specific neurons in barn owls.
    Pérez ML; Peña JL
    J Neurophysiol; 2006 Feb; 95(2):783-90. PubMed ID: 16424454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation.
    Ponnath A; Hoke KL; Farris HE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Apr; 199(4):295-313. PubMed ID: 23344947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrogs (Rana catesbeiana).
    Feng AS; Capranica RR
    J Neurophysiol; 1976 Jul; 39(4):871-81. PubMed ID: 1085815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound.
    Epping WJ; Eggermont JJ
    Hear Res; 1986; 24(1):55-72. PubMed ID: 3489703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences.
    Irvine DR; Gago G
    J Neurophysiol; 1990 Mar; 63(3):570-91. PubMed ID: 2329362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down or bottom up: decreased stimulus salience increases responses to predictable stimuli of auditory thalamic neurons.
    Kommajosyula SP; Cai R; Bartlett E; Caspary DM
    J Physiol; 2019 May; 597(10):2767-2784. PubMed ID: 30924931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor).
    Endepols H; Feng AS; Gerhardt HC; Schul J; Walkowiak W
    Behav Brain Res; 2003 Oct; 145(1-2):63-77. PubMed ID: 14529806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration and recovery processes contribute to the temporal selectivity of neurons in the midbrain of the northern leopard frog, Rana pipiens.
    Alder TB; Rose GJ
    J Comp Physiol A; 2000 Oct; 186(10):923-37. PubMed ID: 11138793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus.
    Kimura A
    Brain Res; 2017 Apr; 1661():49-66. PubMed ID: 28202254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.