These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25120550)

  • 21. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate.
    Nunes C; Primavesi LF; Patel MK; Martinez-Barajas E; Powers SJ; Sagar R; Fevereiro PS; Davis BG; Paul MJ
    Plant Physiol Biochem; 2013 Feb; 63():89-98. PubMed ID: 23257075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation.
    Ghillebert R; Swinnen E; Wen J; Vandesteene L; Ramon M; Norga K; Rolland F; Winderickx J
    FEBS J; 2011 Nov; 278(21):3978-90. PubMed ID: 21883929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peach PpSnRK1α interacts with bZIP11 and maintains trehalose balance in plants.
    Zhang S; Wang H; Luo J; Yu W; Xiao Y; Peng F
    Plant Physiol Biochem; 2021 Mar; 160():377-385. PubMed ID: 33550178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trehalose 6-Phosphate Positively Regulates Fatty Acid Synthesis by Stabilizing WRINKLED1.
    Zhai Z; Keereetaweep J; Liu H; Feil R; Lunn JE; Shanklin J
    Plant Cell; 2018 Oct; 30(10):2616-2627. PubMed ID: 30249634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants.
    Jamsheer K M; Kumar M; Srivastava V
    J Exp Bot; 2021 Sep; 72(17):6042-6065. PubMed ID: 33693699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo protein kinase activity of SnRK1 fluctuates in Arabidopsis rosettes during light-dark cycles.
    Avidan O; Moraes TA; Mengin V; Feil R; Rolland F; Stitt M; Lunn JE
    Plant Physiol; 2023 May; 192(1):387-408. PubMed ID: 36725081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1.
    Blanford J; Zhai Z; Baer MD; Guo G; Liu H; Liu Q; Raugei S; Shanklin J
    Sci Adv; 2024 May; 10(20):eadn0895. PubMed ID: 38758793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial expression patterns of genes encoding sugar sensors in leaves of C4 and C3 grasses.
    Benning UF; Chen L; Watson-Lazowski A; Henry C; Furbank RT; Ghannoum O
    Ann Bot; 2023 Jul; 131(6):985-1000. PubMed ID: 37103118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical Modeling Reveals That Sucrose Regulates Leaf Senescence via Dynamic Sugar Signaling Pathways.
    Asim M; Hussain Q; Wang X; Sun Y; Liu H; Khan R; Du S; Shi Y; Zhang Y
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate.
    Paul MJ; Jhurreea D; Zhang Y; Primavesi LF; Delatte T; Schluepmann H; Wingler A
    Plant Signal Behav; 2010 Apr; 5(4):386-92. PubMed ID: 20139731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The critical roles of three sugar-related proteins (HXK, SnRK1, TOR) in regulating plant growth and stress responses.
    Li G; Zhao Y
    Hortic Res; 2024 Jun; 11(6):uhae099. PubMed ID: 38863993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation.
    Simon NML; Sawkins E; Dodd AN
    Plant Signal Behav; 2018; 13(6):e1457913. PubMed ID: 29584583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of low abundant trehalose-6-phosphate and related metabolites in Medicago truncatula by hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry.
    Mata AT; Jorge TF; Ferreira J; do Rosário Bronze M; Branco D; Fevereiro P; Araújo S; António C
    J Chromatogr A; 2016 Dec; 1477():30-38. PubMed ID: 27908495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.
    Crozet P; Margalha L; Confraria A; Rodrigues A; Martinho C; Adamo M; Elias CA; Baena-González E
    Front Plant Sci; 2014; 5():190. PubMed ID: 24904600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling.
    Ananieva EA; Gillaspy GE; Ely A; Burnette RN; Erickson FL
    Plant Physiol; 2008 Dec; 148(4):1868-82. PubMed ID: 18931139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement.
    Miret JA; Griffiths CA; Paul MJ
    J Plant Physiol; 2024 Mar; 294():154188. PubMed ID: 38295650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SnRK1 and trehalose 6-phosphate - two ancient pathways converge to regulate plant metabolism and growth.
    Baena-González E; Lunn JE
    Curr Opin Plant Biol; 2020 Jun; 55():52-59. PubMed ID: 32259743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Management of plant central metabolism by SnRK1 protein kinases.
    Peixoto B; Baena-González E
    J Exp Bot; 2022 Nov; 73(20):7068-7082. PubMed ID: 35708960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6-phosphate.
    Avidan O; Martins MCM; Feil R; Lohse M; Giorgi FM; Schlereth A; Lunn JE; Stitt M
    Plant Physiol; 2024 Apr; ():. PubMed ID: 38593032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function.
    Broeckx T; Hulsmans S; Rolland F
    J Exp Bot; 2016 Dec; 67(22):6215-6252. PubMed ID: 27856705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.