BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25121460)

  • 21. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.
    Neubrand MW; Carey MC; Laue TM
    Biochemistry; 2015 Nov; 54(45):6783-95. PubMed ID: 26506107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkyl chain length-dependent viscoelastic properties in aqueous wormlike micellar solutions of anionic gemini surfactants with an azobenzene spacer.
    Song B; Hu Y; Song Y; Zhao J
    J Colloid Interface Sci; 2010 Jan; 341(1):94-100. PubMed ID: 19833350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ordering fluctuations in a shear-banding wormlike micellar system.
    Angelico R; Rossi CO; Ambrosone L; Palazzo G; Mortensen K; Olsson U
    Phys Chem Chem Phys; 2010 Aug; 12(31):8856-62. PubMed ID: 20532324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine.
    Rupp C; Steckel H; Müller BW
    Int J Pharm; 2010 Aug; 395(1-2):272-80. PubMed ID: 20580793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the viscoelasticity of nonionic wormlike micelles with β-cyclodextrin derivatives: a highly discriminative process.
    da Silva MA; Weinzaepfel E; Afifi H; Eriksson J; Grillo I; Valero M; Dreiss CA
    Langmuir; 2013 Jun; 29(25):7697-708. PubMed ID: 23682968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation.
    Markina AA; Ivanov VA; Komarov PV; Khokhlov AR; Tung SH
    J Phys Chem B; 2017 Aug; 121(33):7878-7888. PubMed ID: 28737387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling micellar structure and dynamics in an unusually extensive DDAB/bile salt catanionic solution by rheology and NMR-diffusometry.
    Youssry M; Coppola L; Marques EF; Nicotera I
    J Colloid Interface Sci; 2008 Aug; 324(1-2):192-8. PubMed ID: 18495145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase behavior and rheological properties of salt-free catanionic surfactant mixtures in the presence of bile acids.
    Liu C; Hao J; Wu Z
    J Phys Chem B; 2010 Aug; 114(30):9795-804. PubMed ID: 20617849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skin Permeation of Testosterone from Viscoelastic Lecithin Reverse Wormlike Micellar Solution.
    Imai M; Hashizaki K; Yanagi A; Taguchi H; Saito Y; Motohashi S; Fujii M
    Biol Pharm Bull; 2016; 39(4):532-9. PubMed ID: 27040625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography.
    Nichols JW; Ozarowski J
    Biochemistry; 1990 May; 29(19):4600-6. PubMed ID: 2372545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic and structural investigation of the confinement of D and L dimethyl tartrate in lecithin reverse micelles.
    Abbate S; Castiglione F; Lebon F; Longhi G; Longo A; Mele A; Panzeri W; Ruggirello A; Liveri VT
    J Phys Chem B; 2009 Mar; 113(10):3024-33. PubMed ID: 19708163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions.
    Long MA; Kaler EW; Lee SP
    Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the microstructure of bile salt aggregates in aqueous n-alkanol solutions by Small Angle Neutron Scattering.
    Santhanalakshmi J; Shanthalakshmi G; Aswal VK; Goyal PS
    Indian J Biochem Biophys; 2002 Jun; 39(3):170-8. PubMed ID: 22905387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular species composition of inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance.
    Donovan JM; Jackson AA; Carey MC
    J Lipid Res; 1993 Jul; 34(7):1131-40. PubMed ID: 8371061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2008 Jun; 322(2):596-604. PubMed ID: 18395738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and phase equilibria of the soybean lecithin/PEG 40 monostearate/water system.
    Montalvo G; Pons R; Zhang G; Díaz M; Valiente M
    Langmuir; 2013 Nov; 29(47):14369-79. PubMed ID: 24205925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities.
    Cohen DE; Carey MC
    J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of bilirubin partition coefficients in bile salt micelle/aqueous buffer solutions by micellar electrokinetic chromatography.
    Maeder C; Beaudoin GM; Hsu E; Escobar VA; Chambers SM; Kurtin WE; Bushey MM
    Electrophoresis; 2000 Mar; 21(4):706-14. PubMed ID: 10733210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.