These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25121481)

  • 21. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition.
    Ahlawat A; Mishra DK; Sathe VG; Kumar R; Sharma TK
    J Phys Condens Matter; 2013 Jan; 25(2):025902. PubMed ID: 23197270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scattering polarization by anisotropic biomolecules.
    Nee TW; Nee SM; Yang DM; Huang YS
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1030-8. PubMed ID: 18451909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study.
    Lukose J; Shastry S; Mithun N; Mohan G; Ahmed A; Chidangil S
    Biomed Phys Eng Express; 2020 Jan; 6(1):015036. PubMed ID: 33438624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-sheet Raman tweezers for whole-cell biochemical analysis of functional red blood cells.
    Jayraj S; Sarmah P; Ghanashyam C; Bankapur A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123951. PubMed ID: 38277790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells.
    Rusciano G
    Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing Heme Active Sites of Hemoglobin in Functional Red Blood Cells Using Resonance Raman Spectroscopy.
    Dybas J; Chiura T; Marzec KM; Mak PJ
    J Phys Chem B; 2021 Apr; 125(14):3556-3565. PubMed ID: 33787265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarized Raman microspectroscopy on intact human hair.
    Ackermann KR; Koster J; Schlücker S
    J Biophotonics; 2008 Oct; 1(5):419-24. PubMed ID: 19343665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap.
    Singh Y; Chowdhury A; Dasgupta R; Majumder SK
    Eur Biophys J; 2021 Sep; 50(6):867-876. PubMed ID: 34110463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy.
    Jia W; Chen P; Chen W; Li Y
    Medicine (Baltimore); 2018 Sep; 97(39):e12611. PubMed ID: 30278579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Raman scattering on the light field in natural waters: a simple assessment.
    Gordon HR
    Opt Express; 2014 Feb; 22(3):3675-83. PubMed ID: 24663659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells.
    Chowdhury A; Dasgupta R; Majumder SK
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29055124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulations of light scattering by red blood cells.
    Karlsson A; He J; Swartling J; Andersson-Engels S
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of crystal quality and unit cell orientation in epitaxial Cu₂ZnSnSe₄ layers using polarized Raman scattering.
    Krämmer C; Lang M; Redinger A; Sachs J; Gao C; Kalt H; Siebentritt S; Hetterich M
    Opt Express; 2014 Nov; 22(23):28240-6. PubMed ID: 25402065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.
    Bi L; Yang P
    J Biomed Opt; 2013 May; 18(5):55001. PubMed ID: 23652343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman spectra of graphene ribbons.
    Saito R; Furukawa M; Dresselhaus G; Dresselhaus MS
    J Phys Condens Matter; 2010 Aug; 22(33):334203. PubMed ID: 21386493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.