BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25121496)

  • 1. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation.
    Kling S; Bekesi N; Dorronsoro C; Pascual D; Marcos S
    PLoS One; 2014; 9(8):e104904. PubMed ID: 25121496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air puff induced corneal vibrations: theoretical simulations and clinical observations.
    Han Z; Tao C; Zhou D; Sun Y; Zhou C; Ren Q; Roberts CJ
    J Refract Surg; 2014 Mar; 30(3):208-13. PubMed ID: 24763727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm.
    Rahmati SM; Razaghi R; Karimi A
    J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study.
    Nguyen BA; Roberts CJ; Reilly MA
    Front Bioeng Biotechnol; 2018; 6():210. PubMed ID: 30687701
    [No Abstract]   [Full Text] [Related]  

  • 8. Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes.
    Wang LK; Tian L; Zheng YP
    J Biophotonics; 2016 May; 9(5):454-63. PubMed ID: 26755237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Prediction of Air-Puff Induced Corneal Deformation Using LASIK, SMILE, and PRK Finite Element Simulations.
    Francis M; Khamar P; Shetty R; Sainani K; Nuijts RMMA; Haex B; Sinha Roy A
    Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5320-5328. PubMed ID: 30398623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributing factors to corneal deformation in air puff measurements.
    Kling S; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5078-85. PubMed ID: 23821200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis.
    Maczynska E; Karnowski K; Szulzycki K; Malinowska M; Dolezyczek H; Cichanski A; Wojtkowski M; Kaluzny B; Grulkowski I
    J Biophotonics; 2019 Feb; 12(2):e201800154. PubMed ID: 30239154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Age and Myopia in Simultaneous Assessment of Corneal and Extraocular Tissue Stiffness by Air-Puff Applanation.
    Matalia J; Francis M; Tejwani S; Dudeja G; Rajappa N; Sinha Roy A
    J Refract Surg; 2016 Jul; 32(7):486-93. PubMed ID: 27400081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal Viscous Properties Cannot Be Determined From Air-Puff Applanation.
    Francis M; Matalia H; Nuijts RMMA; Haex B; Shetty R; Sinha Roy A
    J Refract Surg; 2019 Nov; 35(11):730-736. PubMed ID: 31710375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel dynamic corneal response parameters in a practice use: a critical review.
    Jędzierowska M; Koprowski R
    Biomed Eng Online; 2019 Feb; 18(1):17. PubMed ID: 30760270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the LASIK flap thickness on corneal biomechanical behavior: a finite element analysis.
    Fang L; Wang Y; Yang R; Deng S; Deng J; Wan L
    BMC Ophthalmol; 2020 Feb; 20(1):67. PubMed ID: 32093676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-specific air puff-induced loading using machine learning.
    Desouky NA; Saafan MM; Mansour MH; Maklad OM
    Front Bioeng Biotechnol; 2023; 11():1277970. PubMed ID: 38026883
    [No Abstract]   [Full Text] [Related]  

  • 17. A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study.
    Redaelli E; Grasa J; Calvo B; Rodriguez Matas JF; Luraghi G
    Front Bioeng Biotechnol; 2022; 10():981665. PubMed ID: 36267451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models.
    Huang L; Shen M; Liu T; Zhang Y; Wang Y
    J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.
    Boszczyk A; Kasprzak H; Jóźwik A
    Ophthalmic Physiol Opt; 2017 May; 37(3):253-262. PubMed ID: 28439976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.