These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25121539)

  • 1. Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials.
    Nicholls DP; Reitich F; Johnson TW; Oh SH
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1820-31. PubMed ID: 25121539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Launching surface plasmon waves via vanishingly small periodic gratings.
    Nicholls DP; Oh SH; Johnson TW; Reitich F
    J Opt Soc Am A Opt Image Sci Vis; 2016 Mar; 33(3):276-85. PubMed ID: 26974896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method of field expansions for vector electromagnetic scattering by layered periodic crossed gratings.
    Nicholls DP
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):701-9. PubMed ID: 26366892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A field expansions method for scattering by periodic multilayered media.
    Malcolm A; Nicholls DP
    J Acoust Soc Am; 2011 Apr; 129(4):1783-93. PubMed ID: 21476635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator.
    Kekatpure RD; Hryciw AC; Barnard ES; Brongersma ML
    Opt Express; 2009 Dec; 17(26):24112-29. PubMed ID: 20052123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid metal-based plasmonics.
    Wang J; Liu S; Vardeny ZV; Nahata A
    Opt Express; 2012 Jan; 20(3):2346-53. PubMed ID: 22330473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.
    Ergül Ö; Gürel L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):509-17. PubMed ID: 23456127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattering-free plasmonic optics with anisotropic metamaterials.
    Elser J; Podolskiy VA
    Phys Rev Lett; 2008 Feb; 100(6):066402. PubMed ID: 18352493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary perturbation methods for high-frequency acoustic scattering: shallow periodic gratings.
    Nicholls DP; Reitich F
    J Acoust Soc Am; 2008 May; 123(5):2531-41. PubMed ID: 18529172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods.
    Chen H; Ming T; Zhang S; Jin Z; Yang B; Wang J
    ACS Nano; 2011 Jun; 5(6):4865-77. PubMed ID: 21524133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography.
    Zhu P; Shi H; Guo LJ
    Opt Express; 2012 May; 20(11):12521-9. PubMed ID: 22714240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and high-order accurate surface perturbation method for nanoplasmonic simulations: basic concepts, analytic continuation and applications.
    Reitich F; Johnson TW; Oh SH; Meyer G
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2175-87. PubMed ID: 24322914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering of light by gratings of metal-coated circular nanocylinders on a dielectric substrate.
    Jandieri V; Meng P; Yasumoto K; Liu Y
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jul; 32(7):1384-9. PubMed ID: 26367170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays.
    Wang J; Zhou W; Li EP
    Opt Express; 2009 Oct; 17(22):20349-54. PubMed ID: 19997263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer Plasmonic Nanostructures for Improved Sensing Activities Using a FEM and Neurocomputing-Based Approach.
    Lo Sciuto G; Napoli C; Kowol P; Capizzi G; Brociek R; Wajda A; Słota D
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of spoof surface plasmons in wire metamaterials.
    Kushiyama Y; Arima T; Uno T
    Opt Express; 2012 Jul; 20(16):18238-47. PubMed ID: 23038373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Launching graphene surface plasmon waves with vanishingly small periodic grating structures.
    Nicholls DP; Oh SH
    J Opt Soc Am A Opt Image Sci Vis; 2021 Apr; 38(4):556-563. PubMed ID: 33798185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.