These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25121675)
1. L(p) regularization for early gate fluorescence molecular tomography. Zhao L; Yang H; Cong W; Wang G; Intes X Opt Lett; 2014 Jul; 39(14):4156-9. PubMed ID: 25121675 [TBL] [Abstract][Full Text] [Related]
2. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Freiberger M; Clason C; Scharfetter H Appl Opt; 2010 Jul; 49(19):3741-7. PubMed ID: 20648140 [TBL] [Abstract][Full Text] [Related]
3. Total variation regularization for 3D reconstruction in fluorescence tomography: experimental phantom studies. Behrooz A; Zhou HM; Eftekhar AA; Adibi A Appl Opt; 2012 Dec; 51(34):8216-27. PubMed ID: 23207394 [TBL] [Abstract][Full Text] [Related]
4. An efficient numerical method for general L(p) regularization in fluorescence molecular tomography. Baritaux JC; Hassler K; Unser M IEEE Trans Med Imaging; 2010 Apr; 29(4):1075-87. PubMed ID: 20236875 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation. He X; Dong F; Yu J; Guo H; Hou Y J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1928-35. PubMed ID: 26560906 [TBL] [Abstract][Full Text] [Related]
6. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties. Ma G; Delorme JF; Gallant P; Boas DA Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Song X; Wang D; Chen N; Bai J; Wang H Opt Express; 2007 Dec; 15(26):18300-17. PubMed ID: 19551128 [TBL] [Abstract][Full Text] [Related]
8. Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography. Cai C; Cai W; Cheng J; Yang Y; Luo J J Biomed Opt; 2016 Dec; 21(12):126012. PubMed ID: 27999862 [TBL] [Abstract][Full Text] [Related]
9. Adaptive regularized method based on homotopy for sparse fluorescence tomography. Xue Z; Ma X; Zhang Q; Wu P; Yang X; Tian J Appl Opt; 2013 Apr; 52(11):2374-84. PubMed ID: 23670769 [TBL] [Abstract][Full Text] [Related]
10. Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements. Xie W; Deng Y; Wang K; Yang X; Luo Q Opt Lett; 2014 Jul; 39(14):4148-51. PubMed ID: 25121673 [TBL] [Abstract][Full Text] [Related]
11. Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction. Liu F; Li M; Zhang B; Luo J; Bai J Appl Opt; 2012 Dec; 51(36):8883-92. PubMed ID: 23262629 [TBL] [Abstract][Full Text] [Related]
13. Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy. Zhang J; Shi J; Cao X; Liu F; Bai J; Luo J J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1886-94. PubMed ID: 25121547 [TBL] [Abstract][Full Text] [Related]
14. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. Yang F; Ozturk MS; Zhao L; Cong W; Wang G; Intes X IEEE Trans Biomed Eng; 2015 Jan; 62(1):248-55. PubMed ID: 25137718 [TBL] [Abstract][Full Text] [Related]
16. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise. Zhou L; Yazici B IEEE Trans Image Process; 2011 Apr; 20(4):1094-111. PubMed ID: 20923735 [TBL] [Abstract][Full Text] [Related]
17. A time-domain wavelet-based approach for fluorescence diffuse optical tomography. Ducros N; Da Silva A; Dinten JM; Seelamantula CS; Unser M; Peyrin F Med Phys; 2010 Jun; 37(6):2890-900. PubMed ID: 20632600 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty. Wu L; Zhao H; Wang X; Yi X; Chen W; Gao F Appl Opt; 2014 Oct; 53(30):6970-82. PubMed ID: 25402783 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method. Kumar YP; Vasu RM J Biomed Opt; 2004; 9(5):1002-12. PubMed ID: 15447022 [TBL] [Abstract][Full Text] [Related]
20. Normalized Born ratio for fluorescence optical projection tomography. Vinegoni C; Razansky D; Figueiredo JL; Nahrendorf M; Ntziachristos V; Weissleder R Opt Lett; 2009 Feb; 34(3):319-21. PubMed ID: 19183644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]