These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25121870)

  • 1. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film.
    Ma J; Jin W; Xuan H; Wang C; Ho HL
    Opt Lett; 2014 Aug; 39(16):4769-72. PubMed ID: 25121870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air.
    Li C; Lan T; Yu X; Bo N; Dong J; Fan S
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS₂ Nanomechanical Resonator Using Fabry-Perot Interference.
    She Y; Li C; Lan T; Peng X; Liu Q; Fan S
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Pressure Response of Edge-Deposited Graphene Nanomechanical Resonators.
    Wan Z; Li C; Wu Z; Liu Y; Liu R; Zhou W; Wang Q
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38980283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry.
    Stachiv I; Gan L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing.
    Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity fiber optic graphene resonant accelerometer.
    Liu Y; Li C; Li J; Wan Z; Fan S
    Opt Lett; 2024 Apr; 49(7):1790-1793. PubMed ID: 38560864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature Fiber Optic Acoustic Pressure Sensors With Air-Backed Graphene Diaphragms.
    Dong Q; Bae H; Zhang Z; Chen Y; Wen Z; Olson DA; Yu M; Liu H
    J Vib Acoust; 2019; 141():. PubMed ID: 31555040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator.
    Zheng X; Liu Y; Zhen J; Qiu J; Liu G
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling graphene nanomechanical motion to a single-electron transistor.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2017 May; 9(17):5608-5614. PubMed ID: 28422197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity fiber-tip pressure sensor with graphene diaphragm.
    Ma J; Jin W; Ho HL; Dai JY
    Opt Lett; 2012 Jul; 37(13):2493-5. PubMed ID: 22743432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High, size-dependent quality factor in an array of graphene mechanical resonators.
    Barton RA; Ilic B; van der Zande AM; Whitney WS; McEuen PL; Parpia JM; Craighead HG
    Nano Lett; 2011 Mar; 11(3):1232-6. PubMed ID: 21294522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane.
    Shi FT; Fan SC; Li C; Li ZA
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrule-top atomic force microscope.
    Chavan D; Gruca G; de Man S; Slaman M; Rector JH; Heeck K; Iannuzzi D
    Rev Sci Instrum; 2010 Dec; 81(12):123702. PubMed ID: 21198027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.
    Wang H; Fenton JC; Chiatti O; Warburton PA
    Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications.
    Xiao Y; Luo F; Zhang Y; Hu F; Zhu M; Qin S
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithic integration of a nanomechanical resonator to an optical microdisk cavity.
    Basarir O; Bramhavar S; Ekinci KL
    Opt Express; 2012 Feb; 20(4):4272-9. PubMed ID: 22418186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing.
    Martinez A; Fuse K; Xu B; Yamashita S
    Opt Express; 2010 Oct; 18(22):23054-61. PubMed ID: 21164646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.