These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 25122278)

  • 1. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes.
    Cherstvy AG; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012134. PubMed ID: 25122278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-time effects and ultraweak ergodicity breaking in superdiffusive dynamics.
    Godec A; Metzler R
    Phys Rev Lett; 2013 Jan; 110(2):020603. PubMed ID: 23383882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes.
    Cherstvy AG; Metzler R
    J Chem Phys; 2015 Apr; 142(14):144105. PubMed ID: 25877560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes.
    Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2013 Dec; 15(46):20220-35. PubMed ID: 24162164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonergodicity mimics inhomogeneity in single particle tracking.
    Lubelski A; Sokolov IM; Klafter J
    Phys Rev Lett; 2008 Jun; 100(25):250602. PubMed ID: 18643647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Gaussian fluctuations resulting from power-law trapping in a lipid bilayer.
    Akimoto T; Yamamoto E; Yasuoka K; Hirano Y; Yasui M
    Phys Rev Lett; 2011 Oct; 107(17):178103. PubMed ID: 22107588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging scaled Brownian motion.
    Safdari H; Chechkin AV; Jafari GR; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042107. PubMed ID: 25974439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Sep; 108(3-1):034113. PubMed ID: 37849140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-time random walk: crossover from anomalous regime to normal regime.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):012101. PubMed ID: 20866668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes.
    Xu Y; Liu X; Li Y; Metzler R
    Phys Rev E; 2020 Dec; 102(6-1):062106. PubMed ID: 33466052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaled Brownian motion as a mean-field model for continuous-time random walks.
    Thiel F; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012115. PubMed ID: 24580180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme value statistics and arcsine laws for heterogeneous diffusion processes.
    Singh P
    Phys Rev E; 2022 Feb; 105(2-1):024113. PubMed ID: 35291128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.