BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25122302)

  • 1. Influence of primary-particle density in the morphology of agglomerates.
    Camejo MD; Espeso DR; Bonilla LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012306. PubMed ID: 25122302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates.
    Kim S; Lee KS; Zachariah MR; Lee D
    J Colloid Interface Sci; 2010 Apr; 344(2):353-61. PubMed ID: 20132942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian aggregation rate of colloid particles with several active sites.
    Nekrasov VM; Polshchitsin AA; Yurkin MA; Yakovleva GE; Maltsev VP; Chernyshev AV
    J Chem Phys; 2014 Aug; 141(6):064309. PubMed ID: 25134573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo Aggregation Code (MCAC) Part 2: Application to soot agglomeration, highlighting the importance of primary particles.
    Morán J; Yon J; Poux A; Corbin F; Ouf FX; Siméon A
    J Colloid Interface Sci; 2020 Sep; 575():274-285. PubMed ID: 32380319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of fractal dimension of DLCA clusters on size of primary particles.
    Wu H; Lattuada M; Morbidelli M
    Adv Colloid Interface Sci; 2013 Jul; 195-196():41-9. PubMed ID: 23623300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale.
    Straube AV
    J Phys Condens Matter; 2011 May; 23(18):184122. PubMed ID: 21508483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size effects on diffusion processes within agarose gels.
    Fatin-Rouge N; Starchev K; Buffle J
    Biophys J; 2004 May; 86(5):2710-9. PubMed ID: 15111390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles.
    Mortuza SM; Kariyawasam LK; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013304. PubMed ID: 26274304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
    Levis D; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into diffusion in 3D crowded media by Monte Carlo simulations: effect of size, mobility and spatial distribution of obstacles.
    Vilaseca E; Isvoran A; Madurga S; Pastor I; Garcés JL; Mas F
    Phys Chem Chem Phys; 2011 Apr; 13(16):7396-407. PubMed ID: 21412541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional simulation of viscous-flow agglomerate sintering.
    Kirchhof MJ; Schmid H-; Peukert W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026319. PubMed ID: 19792261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
    Patti A; Cuetos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology.
    Harshe YM; Ehrl L; Lattuada M
    J Colloid Interface Sci; 2010 Dec; 352(1):87-98. PubMed ID: 20832075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility and settling rate of agglomerates of polydisperse nanoparticles.
    Spyrogianni A; Karadima KS; Goudeli E; Mavrantzas VG; Pratsinis SE
    J Chem Phys; 2018 Feb; 148(6):064703. PubMed ID: 29448768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.