These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Vortex formation of spherical self-propelled particles around a circular obstacle. Pan JX; Wei H; Qi MJ; Wang HF; Zhang JJ; Tian WD; Chen K Soft Matter; 2020 Jun; 16(23):5545-5551. PubMed ID: 32510067 [TBL] [Abstract][Full Text] [Related]
4. Large-Scale Dynamics of Self-propelled Particles Moving Through Obstacles: Model Derivation and Pattern Formation. Aceves-Sanchez P; Degond P; Keaveny EE; Manhart A; Merino-Aceituno S; Peurichard D Bull Math Biol; 2020 Sep; 82(10):129. PubMed ID: 32978682 [TBL] [Abstract][Full Text] [Related]
5. Enhancing directed collective motion of self-propelled particles in confined channel. Wang Z; Hao J; Wang X; Xu J; Yang B J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34229313 [TBL] [Abstract][Full Text] [Related]
6. Noise-induced vortex reversal of self-propelled particles. Chen H; Hou Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041122. PubMed ID: 23214544 [TBL] [Abstract][Full Text] [Related]
7. Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems. Menzel AM J Phys Condens Matter; 2013 Dec; 25(50):505103. PubMed ID: 24275201 [TBL] [Abstract][Full Text] [Related]
8. Dynamics and separation of circularly moving particles in asymmetrically patterned arrays. Reichhardt C; Reichhardt CJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042306. PubMed ID: 24229171 [TBL] [Abstract][Full Text] [Related]
9. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect. Shi SJ; Li HS; Feng GQ; Tian WD; Chen K Phys Chem Chem Phys; 2020 Jul; 22(25):14052-14060. PubMed ID: 32568323 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydrodynamic interactions on rectified transport of self-propelled particles. Ai BQ; He YF; Zhong WR Phys Rev E; 2017 Jan; 95(1-1):012116. PubMed ID: 28208376 [TBL] [Abstract][Full Text] [Related]
11. Active Brownian particles escaping a channel in single file. Locatelli E; Baldovin F; Orlandini E; Pierno M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022109. PubMed ID: 25768460 [TBL] [Abstract][Full Text] [Related]
12. Self-propelled particle in an external potential: existence of an effective temperature. Szamel G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012111. PubMed ID: 25122255 [TBL] [Abstract][Full Text] [Related]
13. Collective motion of binary self-propelled particle mixtures. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249 [TBL] [Abstract][Full Text] [Related]
14. Active swarms on a sphere. Sknepnek R; Henkes S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022306. PubMed ID: 25768504 [TBL] [Abstract][Full Text] [Related]
15. Phase transition of vortexlike self-propelled particles induced by a hostile particle. Duan H; Zhang X Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012701. PubMed ID: 26274197 [TBL] [Abstract][Full Text] [Related]
16. Fluctuation-induced collective motion: a single-particle density analysis. Lee CF Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031125. PubMed ID: 20365715 [TBL] [Abstract][Full Text] [Related]
17. Meandering instability in two-dimensional optimal velocity model for collective motion of self-propelled particles. Nakayama A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031123. PubMed ID: 21230041 [TBL] [Abstract][Full Text] [Related]
18. Emergence of Collective Motion in a Model of Interacting Brownian Particles. Dossetti V; Sevilla FJ Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444 [TBL] [Abstract][Full Text] [Related]
19. Complex self-propelled rings: a minimal model for cell motility. Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641 [TBL] [Abstract][Full Text] [Related]
20. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. Levis D; Berthier L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]