These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25122314)

  • 1. Contact angle hysteresis and pinning at periodic defects in statics.
    Iliev S; Pesheva N; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012406. PubMed ID: 25122314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of contact lines on randomly heterogeneous surfaces.
    David R; Neumann AW
    Langmuir; 2010 Aug; 26(16):13256-62. PubMed ID: 20695567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact angle hysteresis on doubly periodic smooth rough surfaces in Wenzel's regime: The role of the contact line depinning mechanism.
    Iliev S; Pesheva N; Iliev P
    Phys Rev E; 2018 Apr; 97(4-1):042801. PubMed ID: 29758646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
    Promraksa A; Chen LJ
    J Colloid Interface Sci; 2012 Oct; 384(1):172-81. PubMed ID: 22818957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure.
    Kuchin I; Starov V
    Langmuir; 2015 May; 31(19):5345-52. PubMed ID: 25901520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.
    Kozbial A; Trouba C; Liu H; Li L
    Langmuir; 2017 Jan; 33(4):959-967. PubMed ID: 28071919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact angle hysteresis on random self-affine rough surfaces in Wenzel's wetting regime: Numerical study.
    Iliev S; Pesheva N; Iliev P
    Phys Rev E; 2023 Feb; 107(2-1):024802. PubMed ID: 36932625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces.
    Long J; Hyder MN; Huang RY; Chen P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):173-90. PubMed ID: 16154106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.
    Hong SJ; Chang FM; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2011 Jun; 27(11):6890-6. PubMed ID: 21545100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis.
    Lam CN; Wu R; Li D; Hair ML; Neumann AW
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):169-91. PubMed ID: 11911113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact line pinning on microstructured surfaces for liquids in the Wenzel state.
    Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J
    Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
    Iliev S; Pesheva N
    Phys Rev E; 2016 Jun; 93(6):062801. PubMed ID: 27415335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.
    Chibowski EJ
    Adv Colloid Interface Sci; 2005 May; 113(2-3):121-31. PubMed ID: 15935143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.