These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25122337)
1. Voter model on the two-clique graph. Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012802. PubMed ID: 25122337 [TBL] [Abstract][Full Text] [Related]
2. Networks maximizing the consensus time of voter models. Iwamasa Y; Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012816. PubMed ID: 25122351 [TBL] [Abstract][Full Text] [Related]
3. Clique percolation in random networks. Derényi I; Palla G; Vicsek T Phys Rev Lett; 2005 Apr; 94(16):160202. PubMed ID: 15904198 [TBL] [Abstract][Full Text] [Related]
4. Analytically solvable processes on networks. Smilkov D; Kocarev L Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016104. PubMed ID: 21867254 [TBL] [Abstract][Full Text] [Related]
5. Exit probability of the one-dimensional q-voter model: analytical results and simulations for large networks. Timpanaro AM; Prado CP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052808. PubMed ID: 25353845 [TBL] [Abstract][Full Text] [Related]
6. Flow graphs: interweaving dynamics and structure. Lambiotte R; Sinatra R; Delvenne JC; Evans TS; Barahona M; Latora V Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):017102. PubMed ID: 21867345 [TBL] [Abstract][Full Text] [Related]
7. Observability and coarse graining of consensus dynamics through the external equitable partition. O'Clery N; Yuan Y; Stan GB; Barahona M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042805. PubMed ID: 24229224 [TBL] [Abstract][Full Text] [Related]
8. Phase transitions in the q-voter model with noise on a duplex clique. Chmiel A; Sznajd-Weron K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052812. PubMed ID: 26651749 [TBL] [Abstract][Full Text] [Related]
9. Bias in generation of random graphs. Klein-Hennig H; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026101. PubMed ID: 22463273 [TBL] [Abstract][Full Text] [Related]
10. KG2Vec: A node2vec-based vectorization model for knowledge graph. Wang Y; Dong L; Jiang X; Ma X; Li Y; Zhang H PLoS One; 2021; 16(3):e0248552. PubMed ID: 33784319 [TBL] [Abstract][Full Text] [Related]
11. On the visualization of social and other scale-free networks. Jia Y; Hoberock J; Garland M; Hart JC IEEE Trans Vis Comput Graph; 2008; 14(6):1285-92. PubMed ID: 18988975 [TBL] [Abstract][Full Text] [Related]
12. Solution of the voter model by spectral analysis. Pickering W; Lim C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012812. PubMed ID: 25679662 [TBL] [Abstract][Full Text] [Related]
13. Macroscopic description of complex adaptive networks coevolving with dynamic node states. Wiedermann M; Donges JF; Heitzig J; Lucht W; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052801. PubMed ID: 26066206 [TBL] [Abstract][Full Text] [Related]
14. Sequential algorithm for fast clique percolation. Kumpula JM; Kivelä M; Kaski K; Saramäki J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026109. PubMed ID: 18850899 [TBL] [Abstract][Full Text] [Related]
15. Approximating maximum clique with a Hopfield network. Jagota A IEEE Trans Neural Netw; 1995; 6(3):724-35. PubMed ID: 18263357 [TBL] [Abstract][Full Text] [Related]
16. Components in time-varying graphs. Nicosia V; Tang J; Musolesi M; Russo G; Mascolo C; Latora V Chaos; 2012 Jun; 22(2):023101. PubMed ID: 22757508 [TBL] [Abstract][Full Text] [Related]
17. Spectral clustering with epidemic diffusion. Smith LM; Lerman K; Garcia-Cardona C; Percus AG; Ghosh R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042813. PubMed ID: 24229231 [TBL] [Abstract][Full Text] [Related]
18. Voter models on weighted networks. Baronchelli A; Castellano C; Pastor-Satorras R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066117. PubMed ID: 21797451 [TBL] [Abstract][Full Text] [Related]
19. CFinder: locating cliques and overlapping modules in biological networks. Adamcsek B; Palla G; Farkas IJ; Derényi I; Vicsek T Bioinformatics; 2006 Apr; 22(8):1021-3. PubMed ID: 16473872 [TBL] [Abstract][Full Text] [Related]
20. Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs. Nagatani T; Ichinose G; Tainaka KI J Theor Biol; 2018 Aug; 450():66-75. PubMed ID: 29702109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]