These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 25122383)

  • 1. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013021. PubMed ID: 25122383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013021. PubMed ID: 26274283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid drops and surface tension with smoothed particle applied mechanics.
    Nugent S; Posch HA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4968-75. PubMed ID: 11089045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics.
    Pütz M; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032303. PubMed ID: 25871106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method.
    Safari H; Rahimian MH; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033305. PubMed ID: 25314562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smoothed particle hydrodynamics method for evaporating multiphase flows.
    Yang X; Kong SC
    Phys Rev E; 2017 Sep; 96(3-1):033309. PubMed ID: 29346906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillation of viscous drops with smoothed particle hydrodynamics.
    López H; Sigalotti LD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051201. PubMed ID: 16802922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of surface tension and contact angles with smoothed particle hydrodynamics.
    Tartakovsky A; Meakin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026301. PubMed ID: 16196705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.
    Das AK; Das PK
    Langmuir; 2009 Oct; 25(19):11459-66. PubMed ID: 19719159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment.
    Stephan S; Thol M; Vrabec J; Hasse H
    J Chem Inf Model; 2019 Oct; 59(10):4248-4265. PubMed ID: 31609113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling multiphase flow using fluctuating hydrodynamics.
    Chaudhri A; Bell JB; Garcia AL; Donev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033014. PubMed ID: 25314536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations.
    Thieulot C; Janssen LP; Español P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016713. PubMed ID: 16090140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation of interface properties and bulk phase stability: molecular dynamics simulations of carbon dioxide.
    Kraska T; Römer F; Imre AR
    J Phys Chem B; 2009 Apr; 113(14):4688-97. PubMed ID: 19275205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems.
    MacDowell LG; Shen VK; Errington JR
    J Chem Phys; 2006 Jul; 125(3):34705. PubMed ID: 16863371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid nucleation around charged particles in the vapor phase.
    Kroll R; Tsori Y
    J Chem Phys; 2021 Nov; 155(17):174101. PubMed ID: 34742214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative phase-field modeling for boiling phenomena.
    Badillo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041603. PubMed ID: 23214595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.