BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25122700)

  • 1. Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    J Neurophysiol; 2014 Nov; 112(9):2176-84. PubMed ID: 25122700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades.
    DeSimone JC; Weiler J; Aber GS; Heath M
    Vision Res; 2014 Mar; 96():17-24. PubMed ID: 24412739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    Acta Psychol (Amst); 2014 Feb; 146():67-72. PubMed ID: 24412836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response.
    Heath M; Gillen C; Samani A
    Exp Brain Res; 2016 Mar; 234(3):853-65. PubMed ID: 26661337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades.
    Weiler J; Heath M
    Neurosci Lett; 2012 Nov; 530(2):150-4. PubMed ID: 23063688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro- and antisaccade task-switching: response suppression-and not vector inversion-contributes to a task-set inertia.
    Tari B; Heath M
    Exp Brain Res; 2019 Dec; 237(12):3475-3484. PubMed ID: 31741001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-switching effects for visual and auditory pro- and antisaccades: evidence for a task-set inertia.
    Heath M; Starrs F; Macpherson E; Weiler J
    J Mot Behav; 2015; 47(4):319-27. PubMed ID: 25584657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response suppression produces a switch-costĀ for spatially compatible saccades.
    Tari B; Fadel MA; Heath M
    Exp Brain Res; 2019 May; 237(5):1195-1203. PubMed ID: 30809706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia.
    Tari B; Edgar C; Persaud P; Dalton C; Heath M
    Exp Brain Res; 2022 Aug; 240(7-8):2061-2071. PubMed ID: 35727365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisaccades and task-switching: interactions in controlled processing.
    Cherkasova MV; Manoach DS; Intriligator JM; Barton JJ
    Exp Brain Res; 2002 Jun; 144(4):528-37. PubMed ID: 12037637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response suppression delays the planning of subsequent stimulus-driven saccades.
    Weiler J; Mitchell T; Heath M
    PLoS One; 2014; 9(1):e86408. PubMed ID: 24466076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prior-antisaccade effect influences the planning and online control of prosaccades.
    Weiler J; Heath M
    Exp Brain Res; 2012 Feb; 216(4):545-52. PubMed ID: 22120158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching, plasticity, and prediction in a saccadic task-switch paradigm.
    Barton JJ; Greenzang C; Hefter R; Edelman J; Manoach DS
    Exp Brain Res; 2006 Jan; 168(1-2):76-87. PubMed ID: 16096781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trial-type probability and task-switching effects on behavioral response characteristics in a mixed saccade task.
    Pierce JE; McCardel JB; McDowell JE
    Exp Brain Res; 2015 Mar; 233(3):959-69. PubMed ID: 25537465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of switching between leftward and rightward pro- and antisaccades.
    Reuter B; Philipp AM; Koch I; Kathmann N
    Biol Psychol; 2006 Apr; 72(1):88-95. PubMed ID: 16216407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro- and antisaccades: dissociating stimulus and response influences the online control of saccade trajectories.
    Weiler J; Holmes SA; Mulla A; Heath M
    J Mot Behav; 2011; 43(5):375-81. PubMed ID: 21861629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antisaccade task: Vector inversion contributes to a statistical summary representation of target eccentricities.
    Heath M; Gillen C; Weiler J
    J Vis; 2015; 15(4):4. PubMed ID: 26053143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-switching with antisaccades versus no-go trials: a comparison of inter-trial effects.
    Barton JJ; Raoof M; Jameel O; Manoach DS
    Exp Brain Res; 2006 Jun; 172(1):114-9. PubMed ID: 16369785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.