These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25122757)

  • 21. Interaction of human and bacterial AlkB proteins with DNA as probed through chemical cross-linking studies.
    Mishina Y; Lee CH; He C
    Nucleic Acids Res; 2004; 32(4):1548-54. PubMed ID: 15004242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative pan-cancer analysis reveals the prognostic and immunotherapeutic value of ALKBH7 in HNSC.
    Wang T; Lin B; Cai B; Cao Z; Liang C; Wu S; Xu E; Li L; Peng H; Liu H
    Aging (Albany NY); 2024 Jun; 16(19):12781-12805. PubMed ID: 39400540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple but effective modeling strategy for structural properties of non-heme Fe(II) sites in proteins: test of force field models and application to proteins in the AlkB family.
    Pang X; Han K; Cui Q
    J Comput Chem; 2013 Jul; 34(19):1620-35. PubMed ID: 23666816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1,N
    Dylewska M; Kuśmierek JT; Pilżys T; Poznański J; Maciejewska AM
    Biochem J; 2017 May; 474(11):1837-1852. PubMed ID: 28408432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage.
    Li Q; Huang Y; Liu X; Gan J; Chen H; Yang CG
    J Biol Chem; 2016 May; 291(21):11083-93. PubMed ID: 27015802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insights into the interactions and epigenetic functions of human nucleic acid repair protein ALKBH6.
    Ma L; Lu H; Tian Z; Yang M; Ma J; Shang G; Liu Y; Xie M; Wang G; Wu W; Zhang Z; Dai S; Chen Z
    J Biol Chem; 2022 Mar; 298(3):101671. PubMed ID: 35120926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD.
    Reuter K; Pittelkow M; Bursy J; Heine A; Craan T; Bremer E
    PLoS One; 2010 May; 5(5):e10647. PubMed ID: 20498719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1.
    Deng J; Schnaufer A; Salavati R; Stuart KD; Hol WG
    J Mol Biol; 2004 Oct; 343(3):601-13. PubMed ID: 15465048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of a novel N-substituted L-amino acid dioxygenase from Burkholderia ambifaria AMMD.
    Qin HM; Miyakawa T; Jia MZ; Nakamura A; Ohtsuka J; Xue YL; Kawashima T; Kasahara T; Hibi M; Ogawa J; Tanokura M
    PLoS One; 2013; 8(5):e63996. PubMed ID: 23724013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of the ectoine hydroxylase, a snapshot of the active site.
    Höppner A; Widderich N; Lenders M; Bremer E; Smits SH
    J Biol Chem; 2014 Oct; 289(43):29570-83. PubMed ID: 25172507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational flexibility influences structure-function relationships in nucleic acid N-methyl demethylases.
    Waheed SO; Ramanan R; Chaturvedi SS; Ainsley J; Evison M; Ames JM; Schofield CJ; Christov CZ; Karabencheva-Christova TG
    Org Biomol Chem; 2019 Feb; 17(8):2223-2231. PubMed ID: 30720838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase.
    Yi C; Jia G; Hou G; Dai Q; Zhang W; Zheng G; Jian X; Yang CG; Cui Q; He C
    Nature; 2010 Nov; 468(7321):330-3. PubMed ID: 21068844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient kinetic analysis of oxidative dealkylation by the direct reversal DNA repair enzyme AlkB.
    Baldwin MR; Admiraal SJ; O'Brien PJ
    J Biol Chem; 2020 May; 295(21):7317-7326. PubMed ID: 32284330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the molecular boundary and functionality of novel viral AlkB domains using homology modelling and principal component analysis.
    Moore C; Meng B
    J Gen Virol; 2019 Apr; 100(4):691-703. PubMed ID: 30835193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ALKBHs-facilitated RNA modifications and de-modifications.
    A Alemu E; He C; Klungland A
    DNA Repair (Amst); 2016 Aug; 44():87-91. PubMed ID: 27237585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target.
    Niu H; Zhu J; Qu Q; Zhou X; Huang X; Du Z
    Proteins; 2021 Jul; 89(7):853-865. PubMed ID: 33583053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.