These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 25122839)
1. Measurement of intravenously administered γ-Fe2O3 particle amount in mice tissues using vibrating sample magnetometer. Kishimoto M; Miyamoto R; Oda T; Ohara Y; Yanagihara H; Ohkohchi N; Kita E IEEE Trans Nanobioscience; 2014 Dec; 13(4):425-30. PubMed ID: 25122839 [TBL] [Abstract][Full Text] [Related]
2. On-chip magnetometer for characterization of superparamagnetic nanoparticles. Kim KW; Reddy V; Torati SR; Hu XH; Sandhu A; Kim CG Lab Chip; 2015 Feb; 15(3):696-703. PubMed ID: 25474348 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of superparamagnetic contrast agent in sentinel lymph nodes using ex vivo vibrating sample magnetometry. Visscher M; Pouw JJ; van Baarlen J; Klaase JM; Ten Haken B IEEE Trans Biomed Eng; 2013 Sep; 60(9):2594-602. PubMed ID: 23674409 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two kinds of magnetic nanoparticles in vivo and in vitro. Wang L; Zhang Y; Li S; Wang Y; Wang K J Huazhong Univ Sci Technolog Med Sci; 2012 Jun; 32(3):444-450. PubMed ID: 22684573 [TBL] [Abstract][Full Text] [Related]
5. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging. Li R; Wu R; Zhao L; Qin H; Wu J; Zhang J; Bao R; Zou H Nanotechnology; 2014 Dec; 25(49):495102. PubMed ID: 25409786 [TBL] [Abstract][Full Text] [Related]
6. Integrated microHall magnetometer to measure the magnetic properties of nanoparticles. Min C; Park J; Mun JK; Lim Y; Min J; Lim JW; Kang DM; Ahn HK; Shin TH; Cheon J; Lee HS; Weissleder R; Castro CM; Lee H Lab Chip; 2017 Nov; 17(23):4000-4007. PubMed ID: 29067383 [TBL] [Abstract][Full Text] [Related]
7. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Sonavane G; Tomoda K; Makino K Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754 [TBL] [Abstract][Full Text] [Related]
8. Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe. Jia J; Yu JC; Zhu XM; Chan KM; Wang YX J Colloid Interface Sci; 2012 Aug; 379(1):1-7. PubMed ID: 22608848 [TBL] [Abstract][Full Text] [Related]
9. Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. Gutiérrez L; Morales MP; Lázaro FJ Phys Chem Chem Phys; 2014 Mar; 16(10):4456-64. PubMed ID: 24468801 [TBL] [Abstract][Full Text] [Related]
10. Magnetic susceptibility and isothermal remanent magnetization in human tissues: a study case. Sant'Ovaia H; Marques G; Santos A; Gomes C; Rocha A Biometals; 2015 Dec; 28(6):951-8. PubMed ID: 26373856 [TBL] [Abstract][Full Text] [Related]
11. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. De Jong WH; Hagens WI; Krystek P; Burger MC; Sips AJ; Geertsma RE Biomaterials; 2008 Apr; 29(12):1912-9. PubMed ID: 18242692 [TBL] [Abstract][Full Text] [Related]
12. [Pharmacokinetics, tissue distribution and magnetic resonance's response characterstics of folic acid-O-carboxymethyl chitosan ultrasmall superparamagnetic iron oxide nanoparticles in mice and rats]. Gao WH; Liu ST; Fan CX; Qi LY; Chen ZL Yao Xue Xue Bao; 2011 Jul; 46(7):845-51. PubMed ID: 22010356 [TBL] [Abstract][Full Text] [Related]
13. A noninvasive method to determine the fate of Fe(3)O(4) nanoparticles following intravenous injection using scanning SQUID biosusceptometry. Tseng WK; Chieh JJ; Yang YF; Chiang CK; Chen YL; Yang SY; Horng HE; Yang HC; Wu CC PLoS One; 2012; 7(11):e48510. PubMed ID: 23152779 [TBL] [Abstract][Full Text] [Related]
14. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice. Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782 [TBL] [Abstract][Full Text] [Related]
15. Assembling Magnetic Nanoparticles on Nanomechanical Resonators for Torque Magnetometry. Firdous T; Potter DK Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024227 [TBL] [Abstract][Full Text] [Related]
16. [Liver, lung, kidney, heart and spleen structure of rats after multiple intravenous injections of magnetite nanosuspension]. Mil'go IV; Sukhodolo IV Vestn Ross Akad Med Nauk; 2012; (3):75-9. PubMed ID: 22712279 [TBL] [Abstract][Full Text] [Related]
17. Magnetic microgels, a promising candidate for enhanced magnetic adsorbent particles in bioseparation: synthesis, physicochemical characterization, and separation performance. Turcu R; Socoliuc V; Craciunescu I; Petran A; Paulus A; Franzreb M; Vasile E; Vekas L Soft Matter; 2015 Feb; 11(5):1008-18. PubMed ID: 25519891 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Magnetic Nanoparticles in Biological Matrices. Hurley KR; Ring HL; Kang H; Klein ND; Haynes CL Anal Chem; 2015 Dec; 87(23):11611-9. PubMed ID: 26359821 [TBL] [Abstract][Full Text] [Related]
19. Determination of standard zinc values in the intact tissues of mice by ICP spectrometry. Verbanac D; Milin C; Domitrović R; Giacometti J; Pantović R; Ciganj Z Biol Trace Elem Res; 1997 Apr; 57(1):91-6. PubMed ID: 9258472 [TBL] [Abstract][Full Text] [Related]
20. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature. Trifunovic L; Pedrocchi FL; Hoffman S; Maletinsky P; Yacoby A; Loss D Nat Nanotechnol; 2015 Jun; 10(6):541-6. PubMed ID: 25961508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]