These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25123002)

  • 1. Unsteady flow phenomena in human undulatory swimming: a numerical approach.
    Pacholak S; Hochstein S; Rudert A; Brücker C
    Sports Biomech; 2014 Jun; 13(2):176-94. PubMed ID: 25123002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-amplitude undulatory swimming near a wall.
    Fernández-Prats R; Raspa V; Thiria B; Huera-Huarte F; Godoy-Diana R
    Bioinspir Biomim; 2015 Jan; 10(1):016003. PubMed ID: 25561330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of angles of attack, frequency and kick amplitude on swimmer's horizontal velocity during underwater phase of a grab start.
    Houel N; Elipot M; André F; Hellard P
    J Appl Biomech; 2013 Feb; 29(1):49-54. PubMed ID: 22814033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional CFD analysis of the hand and forearm in swimming.
    Marinho DA; Silva AJ; Reis VM; Barbosa TM; Vilas-Boas JP; Alves FB; Machado L; Rouboa AI
    J Appl Biomech; 2011 Feb; 27(1):74-80. PubMed ID: 21451185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi three-dimensional visualization of unsteady wake flow in human undulatory swimming.
    Shimojo H; Gonjo T; Sakakibara J; Sengoku Y; Sanders R; Takagi H
    J Biomech; 2019 Aug; 93():60-69. PubMed ID: 31303331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer.
    Bixler B; Pease D; Fairhurst F
    Sports Biomech; 2007 Jan; 6(1):81-98. PubMed ID: 17542180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optimum finger spacing in human swimming.
    Minetti AE; Machtsiras G; Masters JC
    J Biomech; 2009 Sep; 42(13):2188-90. PubMed ID: 19651409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical review of the techniques used to estimate or measure resistive forces in swimming.
    Sacilotto GB; Ball N; Mason BR
    J Appl Biomech; 2014 Feb; 30(1):119-27. PubMed ID: 24676518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of active drag using the MAD system and an assisted towing method in front crawl swimming.
    Formosa DP; Toussaint HM; Mason BR; Burkett B
    J Appl Biomech; 2012 Dec; 28(6):746-50. PubMed ID: 22695220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backstroke swimming: exploring gender differences in passive drag and instantaneous net drag force.
    Formosa DP; Sayers MG; Burkett B
    J Appl Biomech; 2013 Dec; 29(6):662-9. PubMed ID: 23271003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex re-capturing and kinematics in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2011 Oct; 30(5):998-1007. PubMed ID: 21684028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The key kinematic determinants of undulatory underwater swimming at maximal velocity.
    Connaboy C; Naemi R; Brown S; Psycharakis S; McCabe C; Coleman S; Sanders R
    J Sports Sci; 2016; 34(11):1036-43. PubMed ID: 26367778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the effects of training on underwater undulatory swimming performance and kinematics.
    Ruiz-Navarro JJ; Cano-Adamuz M; Andersen JT; Cuenca-Fernández F; López-Contreras G; Vanrenterghem J; Arellano R
    Sports Biomech; 2024 Jun; 23(6):772-787. PubMed ID: 33663350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic force patterns of an undulatory microswimmer.
    Schulman RD; Backholm M; Ryu WS; Dalnoki-Veress K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050701. PubMed ID: 25353731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic Characteristics of Different Undulatory Underwater Swimming Positions Based on Multi-Body Motion Numerical Simulation Method.
    Yang J; Li T; Chen Z; Zuo C; Li X
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34832017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.