These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 25123491)

  • 1. Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation.
    Maity M; Das S; Maiti NC
    Phys Chem Chem Phys; 2014 Oct; 16(37):20013-22. PubMed ID: 25123491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor.
    Lu X; Tuan HY; Korgel BA; Xia Y
    Chemistry; 2008; 14(5):1584-91. PubMed ID: 18058964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods.
    Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA
    Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics.
    Rastogi L; Kora AJ; J A
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1571-7. PubMed ID: 24364962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Leucine for gold nanoparticles synthesis and their cytotoxic effects evaluation.
    Berghian-Grosan C; Olenic L; Katona G; Perde-Schrepler M; Vulcu A
    Amino Acids; 2014 Nov; 46(11):2545-52. PubMed ID: 25092048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment.
    Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct modulation of localized surface plasmon coupling of Au nanoparticles on solid substrates via weak polyelectrolyte-mediated layer-by-layer self assembly.
    Yuan W; Li CM
    Langmuir; 2009 Jul; 25(13):7578-85. PubMed ID: 19499932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of polyelectrolyte-coated gold nanoparticles.
    Dorris A; Rucareanu S; Reven L; Barrett CJ; Lennox RB
    Langmuir; 2008 Mar; 24(6):2532-8. PubMed ID: 18229959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface.
    Stobiecka M; Hepel M
    Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Kottaisamy M; BarathmaniKanth S; Kartikeyan B; Gurunathan S
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):257-62. PubMed ID: 20197229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH effect on surface potential of polyelectrolytes-capped gold nanoparticles probed by surface-enhanced Raman scattering.
    Kim K; Lee JW; Choi JY; Shin KS
    Langmuir; 2010 Dec; 26(24):19163-9. PubMed ID: 21114273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905).
    Inbakandan D; Venkatesan R; Ajmal Khan S
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):634-9. PubMed ID: 20828999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of the DMF-protected Au nanoclusters: photochemical, dispersion, and thermal properties.
    Kawasaki H; Yamamoto H; Fujimori H; Arakawa R; Iwasaki Y; Inada M
    Langmuir; 2010 Apr; 26(8):5926-33. PubMed ID: 20000635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles.
    Mitra P; Chakraborty PK; Saha P; Ray P; Basu S
    Int J Pharm; 2014 Oct; 473(1-2):636-43. PubMed ID: 25087507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized gold nanoparticles and films stabilized by in situ formed polyeugenol.
    Milczarek G; Ciszewski A
    Colloids Surf B Biointerfaces; 2012 Feb; 90():53-7. PubMed ID: 22019258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.
    Bukar N; Zhao SS; Charbonneau DM; Pelletier JN; Masson JF
    Chem Commun (Camb); 2014 May; 50(38):4947-50. PubMed ID: 24705454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction between casein micelles and gold nanoparticles.
    Liu Y; Guo R
    J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanobactin-mediated one-step synthesis of gold nanoparticles.
    Xin JY; Cheng DD; Zhang LX; Lin K; Fan HC; Wang Y; Xia CG
    Int J Mol Sci; 2013 Nov; 14(11):21676-88. PubMed ID: 24189217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.