These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25123508)

  • 41. Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts.
    Lin Z; Wang TY; Tsai BS; Wu FT; Yu FJ; Tseng YJ; Sung HM; Li WH
    Genome Biol Evol; 2013; 5(6):1065-78. PubMed ID: 23650209
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    Juretschke J; Menssen R; Sickmann A; Wolf DH
    Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae.
    Braun KA; Parua PK; Dombek KM; Miner GE; Young ET
    Mol Cell Biol; 2013 Feb; 33(4):712-24. PubMed ID: 23207903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zbtb7c is a critical gluconeogenic transcription factor that induces glucose-6-phosphatase and phosphoenylpyruvate carboxykinase 1 genes expression during mice fasting.
    Choi WI; Yoon JH; Song JY; Jeon BN; Park JM; Koh DI; Ahn YH; Kim KS; Lee IK; Hur MW
    Biochim Biophys Acta Gene Regul Mech; 2019 Jun; 1862(6):643-656. PubMed ID: 30959128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae.
    Jansuriyakul S; Somboon P; Rodboon N; Kurylenko O; Sibirny A; Soontorngun N
    Appl Microbiol Biotechnol; 2016 May; 100(10):4549-60. PubMed ID: 26875874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.
    Watanabe D; Kaneko A; Sugimoto Y; Ohnuki S; Takagi H; Ohya Y
    J Biosci Bioeng; 2017 Feb; 123(2):183-189. PubMed ID: 27633130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward a global analysis of metabolites in regulatory mutants of yeast.
    Humston EM; Dombek KM; Tu BP; Young ET; Synovec RE
    Anal Bioanal Chem; 2011 Nov; 401(8):2387-402. PubMed ID: 21416166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.
    Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM
    BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.
    Nambu-Nishida Y; Sakihama Y; Ishii J; Hasunuma T; Kondo A
    J Biosci Bioeng; 2018 Jan; 125(1):76-86. PubMed ID: 28869192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.
    Watanabe D; Hashimoto N; Mizuno M; Zhou Y; Akao T; Shimoi H
    Biosci Biotechnol Biochem; 2013; 77(11):2255-62. PubMed ID: 24200791
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F; Pautasso C; Reca S; Cañonero L; Portela P; Moreno S; Rossi S
    Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice.
    Zhang Y; Guan Q; Liu Y; Zhang Y; Chen Y; Chen J; Liu Y; Su Z
    J Biol Chem; 2018 May; 293(20):7894-7904. PubMed ID: 29530977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of Cat8 in energy metabolic balance and glucose tolerance in Saccharomyces cerevisiae.
    Deng H; Du Z; Lu S; Wang Z; He X
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4605-4619. PubMed ID: 37249587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteolytic catabolite inactivation in Saccharomyces cerevisiae.
    Holzer H
    Revis Biol Celular; 1989; 21():305-19. PubMed ID: 2561496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6.
    Kratzer S; Schüller HJ
    Mol Microbiol; 1997 Nov; 26(4):631-41. PubMed ID: 9427394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae.
    Thepnok P; Ratanakhanokchai K; Soontorngun N
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1276-82. PubMed ID: 24998441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae.
    Rahner A; Hiesinger M; Schüller HJ
    Mol Microbiol; 1999 Oct; 34(1):146-56. PubMed ID: 10540293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The transcription factor Ace2 and its paralog Swi5 regulate ethanol production during static fermentation through their targets Cts1 and Rps4a in Saccharomyces cerevisiae.
    Wu Y; Du J; Xu G; Jiang L
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26975390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P; Bergenholm D; Börlin CS; Liu G; Nielsen J
    Nucleic Acids Res; 2019 Jun; 47(10):4986-5000. PubMed ID: 30976803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.