These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25123908)
1. The power of approximate degrees of freedom tests in heteroscedastic factorial designs. Jan SL; Shieh G Behav Res Methods; 2015 Sep; 47(3):871-83. PubMed ID: 25123908 [TBL] [Abstract][Full Text] [Related]
2. Sample size determinations for Welch's test in one-way heteroscedastic ANOVA. Jan SL; Shieh G Br J Math Stat Psychol; 2014 Feb; 67(1):72-93. PubMed ID: 23316952 [TBL] [Abstract][Full Text] [Related]
3. Confidence intervals and sample size calculations for the weighted eta-squared effect sizes in one-way heteroscedastic ANOVA. Shieh G Behav Res Methods; 2013 Mar; 45(1):25-37. PubMed ID: 22806705 [TBL] [Abstract][Full Text] [Related]
4. A systematic approach to designing statistically powerful heteroscedastic 2 × 2 factorial studies while minimizing financial costs. Jan SL; Shieh G BMC Med Res Methodol; 2016 Aug; 16(1):114. PubMed ID: 27578357 [TBL] [Abstract][Full Text] [Related]
5. Sample size determination for examining interaction effects in factorial designs under variance heterogeneity. Shieh G Psychol Methods; 2018 Mar; 23(1):113-124. PubMed ID: 28493739 [TBL] [Abstract][Full Text] [Related]
6. Power Analysis and Sample Size Planning in ANCOVA Designs. Shieh G Psychometrika; 2020 Mar; 85(1):101-120. PubMed ID: 31823115 [TBL] [Abstract][Full Text] [Related]
7. Exact Power and Sample Size Calculations for the Two One-Sided Tests of Equivalence. Shieh G PLoS One; 2016; 11(9):e0162093. PubMed ID: 27598468 [TBL] [Abstract][Full Text] [Related]
8. A practical method for analyzing factorial designs with heteroscedastic data. Vallejo G; Ato M; Fernández MP; Livacic-Rojas PE Psychol Rep; 2008 Jun; 102(3):643-56. PubMed ID: 18763432 [TBL] [Abstract][Full Text] [Related]
9. Power and sample size calculations for comparison of two regression lines with heterogeneous variances. Shieh G PLoS One; 2018; 13(12):e0207745. PubMed ID: 30557387 [TBL] [Abstract][Full Text] [Related]
11. [Generalization of the Brown-Forsythe approach to factorial designs]. Vallejo Seco G; Fernández García MP; Livacic Rojas PE Psicothema; 2008 Nov; 20(4):969-73. PubMed ID: 18940112 [TBL] [Abstract][Full Text] [Related]
12. A robust approach for analyzing unbalanced factorial designs with fixed levels. Vallejo G; Ato M; Fernández MP Behav Res Methods; 2010 May; 42(2):607-17. PubMed ID: 20479192 [TBL] [Abstract][Full Text] [Related]
13. Robust tests for multivariate factorial designs under heteroscedasticity. Vallejo G; Ato M Behav Res Methods; 2012 Jun; 44(2):471-89. PubMed ID: 21994181 [TBL] [Abstract][Full Text] [Related]
14. Testing for group effect in a 2 x k heteroscedastic ANOVA model. Troendle JF Biom J; 2008 Aug; 50(4):571-83. PubMed ID: 18663763 [TBL] [Abstract][Full Text] [Related]
16. Power and Sample Size Calculations for Contrast Analysis in ANCOVA. Shieh G Multivariate Behav Res; 2017; 52(1):1-11. PubMed ID: 28121163 [TBL] [Abstract][Full Text] [Related]
18. Factorial designs in clinical trials: the effects of non-compliance and subadditivity. Brittain E; Wittes J Stat Med; 1989 Feb; 8(2):161-71. PubMed ID: 2704898 [TBL] [Abstract][Full Text] [Related]
19. Sharpening randomization-based causal inference for 2 Lu J Stat Methods Med Res; 2019 Apr; 28(4):1064-1078. PubMed ID: 29205103 [TBL] [Abstract][Full Text] [Related]
20. On tests of treatment-covariate interactions: An illustration of appropriate power and sample size calculations. Shieh G PLoS One; 2017; 12(5):e0177682. PubMed ID: 28545117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]