These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 25123990)
41. Photodegradation catalyst discovery by high-throughput experiment. Dai QX; Xiao HY; Li WS; Na YQ; Zhou XP J Comb Chem; 2005; 7(4):539-45. PubMed ID: 16004496 [TBL] [Abstract][Full Text] [Related]
42. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
43. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Lee JD; Miller JB; Shneidman AV; Sun L; Weaver JF; Aizenberg J; Biener J; Boscoboinik JA; Foucher AC; Frenkel AI; van der Hoeven JES; Kozinsky B; Marcella N; Montemore MM; Ngan HT; O'Connor CR; Owen CJ; Stacchiola DJ; Stach EA; Madix RJ; Sautet P; Friend CM Chem Rev; 2022 May; 122(9):8758-8808. PubMed ID: 35254051 [TBL] [Abstract][Full Text] [Related]
44. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Angelici C; Weckhuysen BM; Bruijnincx PC ChemSusChem; 2013 Sep; 6(9):1595-614. PubMed ID: 23703747 [TBL] [Abstract][Full Text] [Related]
45. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Lu J; Elam JW; Stair PC Acc Chem Res; 2013 Aug; 46(8):1806-15. PubMed ID: 23480735 [TBL] [Abstract][Full Text] [Related]
46. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur. Chen CL; Wang CH; Weng HS Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907 [TBL] [Abstract][Full Text] [Related]
47. Ethanol Conversion to Butadiene over Isolated Zinc and Yttrium Sites Grafted onto Dealuminated Beta Zeolite. Qi L; Zhang Y; Conrad MA; Russell CK; Miller J; Bell AT J Am Chem Soc; 2020 Aug; 142(34):14674-14687. PubMed ID: 32787241 [TBL] [Abstract][Full Text] [Related]
48. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide. Hurtado P; Ordóñez S; Vega A; Díez FV Chemosphere; 2004 May; 55(5):681-9. PubMed ID: 15013673 [TBL] [Abstract][Full Text] [Related]
49. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane. An K; Alayoglu S; Musselwhite N; Na K; Somorjai GA J Am Chem Soc; 2014 May; 136(19):6830-3. PubMed ID: 24773412 [TBL] [Abstract][Full Text] [Related]
50. Effect of nanosized gold particle addition to supported metal oxide catalyst in methanol oxidation. Kim KJ; You YJ; Chung MC; Kang CS; Chung KH; Jeong WJ; Jeong SW; Ahn HG J Nanosci Nanotechnol; 2006 Nov; 6(11):3589-93. PubMed ID: 17252817 [TBL] [Abstract][Full Text] [Related]
51. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3. Mondloch JE; Wang Q; Frenkel AI; Finke RG J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521 [TBL] [Abstract][Full Text] [Related]
52. Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity. Chang H; Jong MT; Wang C; Qu R; Du Y; Li J; Hao J Environ Sci Technol; 2013 Oct; 47(20):11692-9. PubMed ID: 24024774 [TBL] [Abstract][Full Text] [Related]
53. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. Lebarbier VM; Karim AM; Engelhard MH; Wu Y; Xu BQ; Petersen EJ; Datye AK; Wang Y ChemSusChem; 2011 Nov; 4(11):1679-84. PubMed ID: 21919212 [TBL] [Abstract][Full Text] [Related]
54. Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts. Einaga H; Ogata A Environ Sci Technol; 2010 Apr; 44(7):2612-7. PubMed ID: 20222728 [TBL] [Abstract][Full Text] [Related]
55. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water. Kim KH; Kim JR; Ihm SK J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401 [TBL] [Abstract][Full Text] [Related]
56. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Afewerki S; Córdova A Chem Rev; 2016 Nov; 116(22):13512-13570. PubMed ID: 27723291 [TBL] [Abstract][Full Text] [Related]
57. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules. Wang Y; Tang Y; Shao Y J Mol Graph Model; 2017 Sep; 76():521-534. PubMed ID: 28629707 [TBL] [Abstract][Full Text] [Related]
58. Selective amplification of C=O bond hydrogenation on Pt/TiO₂: catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation. Kennedy G; Baker LR; Somorjai GA Angew Chem Int Ed Engl; 2014 Mar; 53(13):3405-8. PubMed ID: 24554309 [TBL] [Abstract][Full Text] [Related]
59. Effect of active component addition and support modification on catalytic activity of Ag/Al More PM J Environ Manage; 2017 Mar; 188():43-48. PubMed ID: 27930954 [TBL] [Abstract][Full Text] [Related]
60. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Wang R; Li J Environ Sci Technol; 2010 Jun; 44(11):4282-7. PubMed ID: 20446658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]