These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 25124167)

  • 1. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some cautions on the use of instrumental variables estimators in outcomes research: how bias in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample size.
    Crown WH; Henk HJ; Vanness DJ
    Value Health; 2011 Dec; 14(8):1078-84. PubMed ID: 22152177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis approaches to address treatment nonadherence in pragmatic trials with point-treatment settings: a simulation study.
    Hossain MB; Mosquera L; Karim ME
    BMC Med Res Methodol; 2022 Feb; 22(1):46. PubMed ID: 35172746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias testing, bias correction, and confounder selection using an instrumental variable model.
    Yeob Choi B; Fine JP; Alan Brookhart M
    Stat Med; 2020 Dec; 39(29):4386-4404. PubMed ID: 32854161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the performance of physician's prescribing preference as an instrumental variable in comparative effectiveness research with moderate and small sample sizes: a simulation study.
    Zhang L; Lewsey J; McAllister DA
    J Comp Eff Res; 2024 May; 13(5):e230044. PubMed ID: 38567966
    [No Abstract]   [Full Text] [Related]  

  • 9. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exploratory instrumental variable analysis of the outcomes of localized breast cancer treatments in a medicare population.
    Hadley J; Polsky D; Mandelblatt JS; Mitchell JM; Weeks JC; Wang Q; Hwang YT;
    Health Econ; 2003 Mar; 12(3):171-86. PubMed ID: 12605463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analysis and power for instrumental variable studies.
    Wang X; Jiang Y; Zhang NR; Small DS
    Biometrics; 2018 Dec; 74(4):1150-1160. PubMed ID: 29603714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental variables vs. grouping approach for reducing bias due to measurement error.
    Batistatou E; McNamee R
    Int J Biostat; 2008; 4(1):Article 8. PubMed ID: 22462115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The missing cause approach to unmeasured confounding in pharmacoepidemiology.
    Abrahamowicz M; Bjerre LM; Beauchamp ME; LeLorier J; Burne R
    Stat Med; 2016 Mar; 35(7):1001-16. PubMed ID: 26932124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we make smart choices between OLS and contaminated IV methods?
    Basu A; Chan KC
    Health Econ; 2014 Apr; 23(4):462-72. PubMed ID: 23765683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Too much ado about instrumental variable approach: is the cure worse than the disease?
    Baser O
    Value Health; 2009; 12(8):1201-9. PubMed ID: 19497084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrumental variable analysis in the presence of unmeasured confounding.
    Zhang Z; Uddin MJ; Cheng J; Huang T
    Ann Transl Med; 2018 May; 6(10):182. PubMed ID: 29951504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.