These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 25124270)
1. Comparison of phloem and xylem hydraulic architecture in Picea abies stems. Jyske T; Hölttä T New Phytol; 2015 Jan; 205(1):102-15. PubMed ID: 25124270 [TBL] [Abstract][Full Text] [Related]
2. Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions. Mayr S; Rosner S Tree Physiol; 2011 Jan; 31(1):59-67. PubMed ID: 21389002 [TBL] [Abstract][Full Text] [Related]
3. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Lintunen A; Kalliokoski T Tree Physiol; 2010 Nov; 30(11):1433-47. PubMed ID: 21030407 [TBL] [Abstract][Full Text] [Related]
4. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Mayr S; Schmid P; Laur J; Rosner S; Charra-Vaskou K; Dämon B; Hacke UG Plant Physiol; 2014 Apr; 164(4):1731-40. PubMed ID: 24521876 [TBL] [Abstract][Full Text] [Related]
5. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Bettiati D; Petit G; Anfodillo T Tree Physiol; 2012 Feb; 32(2):171-7. PubMed ID: 22262584 [TBL] [Abstract][Full Text] [Related]
6. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. Petit G; Anfodillo T; Mencuccini M New Phytol; 2008; 177(3):653-664. PubMed ID: 18069964 [TBL] [Abstract][Full Text] [Related]
7. Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Gall R; Landolt W; Schleppi P; Michellod V; Bucher JB Tree Physiol; 2002 Jun; 22(9):613-23. PubMed ID: 12069917 [TBL] [Abstract][Full Text] [Related]
8. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Castagneri D; Petit G; Carrer M Tree Physiol; 2015 Dec; 35(12):1378-87. PubMed ID: 26377871 [TBL] [Abstract][Full Text] [Related]
9. Temporal and spatial variability of phloem structure in Picea abies and Fagus sylvatica and its link to climate. Gričar J; Jevšenak J; Giagli K; Eler K; Tsalagkas D; Gryc V; Vavrčík H; Čufar K; Prislan P Plant Cell Environ; 2024 Apr; 47(4):1285-1299. PubMed ID: 38213092 [TBL] [Abstract][Full Text] [Related]
10. No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. Petit G; Zambonini D; Hesse BD; Häberle KH Glob Chang Biol; 2022 Aug; 28(15):4668-4683. PubMed ID: 35555836 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Nikinmaa E; Sievänen R; Hölttä T Ann Bot; 2014 Sep; 114(4):653-66. PubMed ID: 24854169 [TBL] [Abstract][Full Text] [Related]
12. Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Trifilò P; Lo Gullo MA; Salleo S; Callea K; Nardini A Tree Physiol; 2008 Oct; 28(10):1505-12. PubMed ID: 18708332 [TBL] [Abstract][Full Text] [Related]
13. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Sevanto S; Hölttä T; Holbrook NM Plant Cell Environ; 2011 Apr; 34(4):690-703. PubMed ID: 21241327 [TBL] [Abstract][Full Text] [Related]
14. The hydraulic architecture of Ginkgo leaves. Carvalho MR; Turgeon R; Owens T; Niklas KJ Am J Bot; 2017 Sep; 104(9):1285-1298. PubMed ID: 29885239 [TBL] [Abstract][Full Text] [Related]
15. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment. Tomasella M; Beikircher B; Häberle KH; Hesse B; Kallenbach C; Matyssek R; Mayr S Tree Physiol; 2018 Feb; 38(2):198-211. PubMed ID: 29177459 [TBL] [Abstract][Full Text] [Related]
16. Hydraulic constraints limit height growth in trees at high altitude. Petit G; Anfodillo T; Carraro V; Grani F; Carrer M New Phytol; 2011 Jan; 189(1):241-52. PubMed ID: 20840508 [TBL] [Abstract][Full Text] [Related]
17. Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. Losada JM; Holbrook NM Am J Bot; 2019 Feb; 106(2):244-259. PubMed ID: 30793276 [TBL] [Abstract][Full Text] [Related]
18. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. Petit G; Pfautsch S; Anfodillo T; Adams MA New Phytol; 2010 Sep; 187(4):1146-1153. PubMed ID: 20497350 [TBL] [Abstract][Full Text] [Related]
19. Scaling relationships and vessel packing in petioles. Ray DM; Jones CS Am J Bot; 2018 Apr; 105(4):667-676. PubMed ID: 29664993 [TBL] [Abstract][Full Text] [Related]
20. Axial conduit widening, tree height, and height growth rate set the hydraulic transition of sapwood into heartwood. Petit G; Mencuccini M; Carrer M; Prendin AL; Hölttä T J Exp Bot; 2023 Sep; 74(17):5072-5087. PubMed ID: 37352139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]