BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 25124273)

  • 1. Metabolism in HD: still a relevant mechanism?
    Duan W; Jiang M; Jin J
    Mov Disord; 2014 Sep; 29(11):1366-74. PubMed ID: 25124273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism.
    Seong IS; Ivanova E; Lee JM; Choo YS; Fossale E; Anderson M; Gusella JF; Laramie JM; Myers RH; Lesort M; MacDonald ME
    Hum Mol Genet; 2005 Oct; 14(19):2871-80. PubMed ID: 16115812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration.
    Cui L; Jeong H; Borovecki F; Parkhurst CN; Tanese N; Krainc D
    Cell; 2006 Oct; 127(1):59-69. PubMed ID: 17018277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease.
    Jin J; Albertz J; Guo Z; Peng Q; Rudow G; Troncoso JC; Ross CA; Duan W
    J Neurochem; 2013 May; 125(3):410-9. PubMed ID: 23373812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease.
    Mihm MJ; Amann DM; Schanbacher BL; Altschuld RA; Bauer JA; Hoyt KR
    Neurobiol Dis; 2007 Feb; 25(2):297-308. PubMed ID: 17126554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of overexpression of huntingtin proteins on mitochondrial integrity.
    Wang H; Lim PJ; Karbowski M; Monteiro MJ
    Hum Mol Genet; 2009 Feb; 18(4):737-52. PubMed ID: 19039036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism.
    Lee JM; Ivanova EV; Seong IS; Cashorali T; Kohane I; Gusella JF; MacDonald ME
    PLoS Genet; 2007 Aug; 3(8):e135. PubMed ID: 17708681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial bioenergetics and dynamics in Huntington's disease: tripartite synapses and selective striatal degeneration.
    Oliveira JM
    J Bioenerg Biomembr; 2010 Jun; 42(3):227-34. PubMed ID: 20454921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular targets and therapeutic strategies in Huntington's disease.
    Rego AC; de Almeida LP
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):361-81. PubMed ID: 16101555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergetics in Huntington's disease.
    Grünewald T; Beal MF
    Ann N Y Acad Sci; 1999; 893():203-13. PubMed ID: 10672239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease.
    Quintanilla RA; Johnson GV
    Brain Res Bull; 2009 Oct; 80(4-5):242-7. PubMed ID: 19622387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation.
    Chaturvedi RK; Calingasan NY; Yang L; Hennessey T; Johri A; Beal MF
    Hum Mol Genet; 2010 Aug; 19(16):3190-205. PubMed ID: 20529956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release.
    Choo YS; Johnson GV; MacDonald M; Detloff PJ; Lesort M
    Hum Mol Genet; 2004 Jul; 13(14):1407-20. PubMed ID: 15163634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
    Huang CC; Faber PW; Persichetti F; Mittal V; Vonsattel JP; MacDonald ME; Gusella JF
    Somat Cell Mol Genet; 1998 Jul; 24(4):217-33. PubMed ID: 10410676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).
    Ratovitski T; Arbez N; Stewart JC; Chighladze E; Ross CA
    Cell Cycle; 2015; 14(11):1716-29. PubMed ID: 25927346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and metabolic-based protective strategies in Huntington's disease: the case of creatine and coenzyme Q.
    Naia L; Ribeiro MJ; Rego AC
    Rev Neurosci; 2011 Dec; 23(1):13-28. PubMed ID: 22150069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative metabolism in YAC128 mouse model of Huntington's disease.
    Hamilton J; Pellman JJ; Brustovetsky T; Harris RA; Brustovetsky N
    Hum Mol Genet; 2015 Sep; 24(17):4862-78. PubMed ID: 26041817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond.
    Tsunemi T; La Spada AR
    Prog Neurobiol; 2012 May; 97(2):142-51. PubMed ID: 22100502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.