These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25124435)

  • 21. Swarm SLAM: Challenges and Perspectives.
    Kegeleirs M; Grisetti G; Birattari M
    Front Robot AI; 2021; 8():618268. PubMed ID: 33816567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing Expandable-Structure Robots for Human-Robot Interaction.
    Hedayati H; Suzuki R; Rees W; Leithinger D; Szafir D
    Front Robot AI; 2022; 9():719639. PubMed ID: 35480087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sparse Robot Swarms: Moving Swarms to Real-World Applications.
    Tarapore D; Groß R; Zauner KP
    Front Robot AI; 2020; 7():83. PubMed ID: 33501250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive Online Fault Diagnosis in Autonomous Robot Swarms.
    O'Keeffe J; Tarapore D; Millard AG; Timmis J
    Front Robot AI; 2018; 5():131. PubMed ID: 33501009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing a cohesive pattern for collective navigation based on a swarm of robotics.
    Soliman YA; Abdulkader SN; Mohamed TM
    PeerJ Comput Sci; 2021; 7():e626. PubMed ID: 34395863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network.
    Guo H; Meng Y; Jin Y
    Biosystems; 2009 Dec; 98(3):193-203. PubMed ID: 19446001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallization-Inspired Design and Modeling of Self-Assembly Lattice-Formation Swarm Robotics.
    Pan Z; Wen G; Yin H; Yin S; Tan Z
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A swarm design paradigm unifying swarm behaviors using minimalistic communication.
    Cherian Varughese J; Hornischer H; Zahadat P; Thenius R; Wotawa F; Schmickl T
    Bioinspir Biomim; 2020 Mar; 15(3):036005. PubMed ID: 31971516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular swarm robots: recent progress and future challenges.
    Kabir AMR; Inoue D; Kakugo A
    Sci Technol Adv Mater; 2020 Jun; 21(1):323-332. PubMed ID: 32939158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Information Exchange Design Patterns for Robot Swarm Foraging and Their Application in Robot Control Algorithms.
    Pitonakova L; Crowder R; Bullock S
    Front Robot AI; 2018; 5():47. PubMed ID: 33500932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks.
    Ozkan-Aydin Y; Goldman DI
    Sci Robot; 2021 Jul; 6(56):. PubMed ID: 34321347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ant-like task allocation and recruitment in cooperative robots.
    Krieger MJ; Billeter JB; Keller L
    Nature; 2000 Aug; 406(6799):992-5. PubMed ID: 10984052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The k -Unanimity Rule for Self-Organized Decision-Making in Swarms of Robots.
    Scheidler A; Brutschy A; Ferrante E; Dorigo M
    IEEE Trans Cybern; 2016 May; 46(5):1175-88. PubMed ID: 27093717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms.
    Yigit B; Alapan Y; Sitti M
    Adv Sci (Weinh); 2019 Mar; 6(6):1801837. PubMed ID: 30937264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond Bio-Inspired Robotics: How Multi-Robot Systems Can Support Research on Collective Animal Behavior.
    Horsevad N; Kwa HL; Bouffanais R
    Front Robot AI; 2022; 9():865414. PubMed ID: 35795475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenotypic Plasticity Provides a Bioinspiration Framework for Minimal Field Swarm Robotics.
    Hunt ER
    Front Robot AI; 2020; 7():23. PubMed ID: 33501192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing collective behavior in a termite-inspired robot construction team.
    Werfel J; Petersen K; Nagpal R
    Science; 2014 Feb; 343(6172):754-8. PubMed ID: 24531967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concurrent design of control software and configuration of hardware for robot swarms under economic constraints.
    Salman M; Ligot A; Birattari M
    PeerJ Comput Sci; 2019; 5():e221. PubMed ID: 33816874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.