These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25124715)

  • 21. Evolution and development of inflorescences and floral symmetry in Solanaceae.
    Zhang J; Stevens PF; Zhang W
    Am J Bot; 2022 May; 109(5):746-767. PubMed ID: 35619567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and Biological Diversity of Trichoderma stromaticum, a Mycoparasite of the Cacao Witches'-Broom Pathogen.
    de Souza JT; Pomella AW; Bowers JH; Pirovani CP; Loguercio LL; Hebbar KP
    Phytopathology; 2006 Jan; 96(1):61-7. PubMed ID: 18944205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular identification of a new phytoplasma associated with alfalfa witches'-broom in oman.
    Khan AJ; Botti S; Al-Subhi AM; Gundersen-Rindal DE; Bertaccini AF
    Phytopathology; 2002 Oct; 92(10):1038-47. PubMed ID: 18944213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of
    de Araújo Rodrigues P; de Morais SM; Aguiar LA; Vila-Nova NS; Benjamin SR
    Toxicol Rep; 2019; 6():1182-1187. PubMed ID: 31763182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversity and functional roles of floral glands in Malpighiaceae: insights in Lophopterys floribunda W.R. Anderson & C. Davis.
    Sanches MM; Guesdon IR; Alves Meira RMS
    Protoplasma; 2023 Nov; 260(6):1555-1567. PubMed ID: 37338645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 'Candidatus Phytoplasma omanense', associated with witches'-broom of Cassia italica (Mill.) Spreng. in Oman.
    Al-Saady NA; Khan AJ; Calari A; Al-Subhi AM; Bertaccini A
    Int J Syst Evol Microbiol; 2008 Feb; 58(Pt 2):461-6. PubMed ID: 18218949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key developmental transitions during flower morphogenesis and their regulation.
    Wagner D
    Curr Opin Genet Dev; 2017 Aug; 45():44-50. PubMed ID: 28314174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gynoecium with carpel dimorphism in Tricomaria usillo, comparison with other genera of the Carolus clade (Malpighiaceae).
    Aliscioni SS; Gotelli M; Torretta JP
    Protoplasma; 2019 Jul; 256(4):1133-1144. PubMed ID: 30953173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flower development and a functional analysis of related genes in
    He H; Chen X; Wang T; Zhang X; Liu Z; Qu S; Gu Z; Huang M; Huang H
    Front Plant Sci; 2024; 15():1370949. PubMed ID: 38590746
    [No Abstract]   [Full Text] [Related]  

  • 30. Unusual positional effects on flower sex in an andromonoecious tree: Resource competition, architectural constraints, or inhibition by the apical flower?
    Granado-Yela C; Balaguer L; Cayuela L; Méndez M
    Am J Bot; 2017 Apr; 104(4):608-615. PubMed ID: 28428197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Inflorescences of Maize.
    Bonnett OT
    Science; 1954 Jul; 120(3107):77-87. PubMed ID: 17747065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Morphogenetic lability of reproductive structures in Ruppia maritima (Ruppiaceae, Alismatales): from two lateral flowers to a terminal flower].
    Lokk IÉ; Sokolov DD; Remizova MV
    Ontogenez; 2011; 42(4):285-99. PubMed ID: 21950054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative inflorescence development in selected Andean Santalales.
    Suaza-Gaviria V; González F; Pabón-Mora N
    Am J Bot; 2017 Jan; 104(1):24-38. PubMed ID: 28057689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A galling insect activates plant reproductive programs during gall development.
    Schultz JC; Edger PP; Body MJA; Appel HM
    Sci Rep; 2019 Feb; 9(1):1833. PubMed ID: 30755671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Floral ontogeny of
    Marques Casanova J; Cardoso D; Barros CF; de Lima HC; De Toni KLG
    PeerJ; 2022; 10():e13975. PubMed ID: 36101879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional role and evolutionary contributions of floral gland morphoanatomy in the Paleotropical genus Acridocarpus (Malpighiaceae).
    Guesdon IR; Amorim AM; Meira RMSA
    PLoS One; 2019; 14(9):e0222561. PubMed ID: 31527912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.
    Dorchin N; Cramer MD; Hoffmann JH
    Ecology; 2006 Jul; 87(7):1781-91. PubMed ID: 16922327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower.
    Rudall PJ; Remizowa MV; Prenner G; Prychid CJ; Tuckett RE; Sokoloff DD
    Am J Bot; 2009 Jan; 96(1):67-82. PubMed ID: 21628176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch.
    Lemmetyinen J; Hassinen M; Elo A; Porali I; Keinonen K; Mäkelä H; Sopanen T
    Physiol Plant; 2004 May; 121(1):149-162. PubMed ID: 15086829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.