These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25124892)

  • 1. Estimation of contaminant subslab concentration in petroleum vapor intrusion.
    Yao Y; Yang F; Suuberg EM; Provoost J; Liu W
    J Hazard Mater; 2014 Aug; 279():336-47. PubMed ID: 25124892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment.
    Verginelli I; Yao Y; Wang Y; Ma J; Suuberg EM
    J Hazard Mater; 2016 Jul; 312():84-96. PubMed ID: 27016669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Role of Soil Texture in Petroleum Vapor Intrusion.
    Yao Y; Mao F; Xiao Y; Chen H; Verginelli I; Luo J
    J Environ Qual; 2018 Sep; 47(5):1179-1185. PubMed ID: 30272787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).
    Ma J; Li H; Spiese R; Wilson J; Yan G; Guo S
    Environ Pollut; 2016 Jun; 213():825-832. PubMed ID: 27038569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor intrusion screening model for the evaluation of risk-based vertical exclusion distances at petroleum contaminated sites.
    Verginelli I; Baciocchi R
    Environ Sci Technol; 2014 Nov; 48(22):13263-72. PubMed ID: 25329246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.
    Yao Y; Wu Y; Wang Y; Verginelli I; Zeng T; Suuberg EM; Jiang L; Wen Y; Ma J
    Environ Sci Technol; 2015 Oct; 49(19):11577-85. PubMed ID: 26322369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil.
    Zhu ZW; Feng SJ; Chen HX; Chen ZL; Ding XH; Peng CH
    Chemosphere; 2022 Aug; 300():134522. PubMed ID: 35395265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Contaminant Subslab Concentration in Vapor Intrusion Including Lateral Source-Building Separation.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Vadose Zone J; 2013 Aug; 12(3):. PubMed ID: 24795543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: influence of degradation rate, source concentration, and depth.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2006 Apr; 40(7):2304-15. PubMed ID: 16646467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of contaminant subslab concentration in vapor intrusion.
    Yao Y; Pennell KG; Suuberg EM
    J Hazard Mater; 2012 Sep; 231-232():10-7. PubMed ID: 22776832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of building pressure cycling to generate sub-foundation aerobic barrier for mitigating petroleum vapor intrusion.
    Liu Y; Verginelli I; Yao Y
    Sci Total Environ; 2021 Jul; 779():146460. PubMed ID: 33744589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical Quantification of the Subslab Volatile Organic Vapor Concentration from a Non-uniform Source.
    Shen R; Suuberg EM
    Environ Model Softw; 2014 Apr; 54():1-8. PubMed ID: 24639604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the effect of slab features on vapor intrusion of crack entry.
    Yao Y; Pennell KG; Suuberg EM
    Build Environ; 2013 Jan; 59():417-425. PubMed ID: 23359620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling quantification of the influence of soil moisture on subslab vapor concentration.
    Shen R; Yao Y; Pennell KG; Suuberg EM
    Environ Sci Process Impacts; 2013 Jul; 15(7):1444-51. PubMed ID: 23752876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-dimensional analytical model of petroleum vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM
    Water Resour Res; 2016 Feb; 52(2):1528-1539. PubMed ID: 28255184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen transport from the atmosphere to soil gas beneath a slab-on-grade foundation overlying petroleum-impacted soil.
    Lundegard PD; Johnson PC; Dahlen P
    Environ Sci Technol; 2008 Aug; 42(15):5534-40. PubMed ID: 18754472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor intrusion attenuation factors relative to subslab and source, reconsidered in light of background data.
    Yao Y; Wu Y; Suuberg EM; Provoost J; Shen R; Ma J; Liu J
    J Hazard Mater; 2015 Apr; 286():553-61. PubMed ID: 25618001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.