BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25124921)

  • 1. Glutathione peroxidase's reaction intermediate selenenic acid is stabilized by the protein microenvironment.
    Li F; Liu J; Rozovsky S
    Free Radic Biol Med; 2014 Nov; 76():127-35. PubMed ID: 25124921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study.
    Orian L; Mauri P; Roveri A; Toppo S; Benazzi L; Bosello-Travain V; De Palma A; Maiorino M; Miotto G; Zaccarin M; Polimeno A; Flohé L; Ursini F
    Free Radic Biol Med; 2015 Oct; 87():1-14. PubMed ID: 26163004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can dimedone be used to study selenoproteins? An investigation into the reactivity of dimedone toward oxidized forms of selenocysteine.
    Payne NC; Barber DR; Ruggles EL; Hondal RJ
    Protein Sci; 2019 Jan; 28(1):41-55. PubMed ID: 29451338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction.
    Borchert A; Kalms J; Roth SR; Rademacher M; Schmidt A; Holzhutter HG; Kuhn H; Scheerer P
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1095-1107. PubMed ID: 29883798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids.
    Masuda R; Kimura R; Karasaki T; Sase S; Goto K
    J Am Chem Soc; 2021 May; 143(17):6345-6350. PubMed ID: 33887135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of selenocysteine-derived reactive intermediates utilizing a nano-sized molecular cavity as a protective cradle.
    Masuda R; Goto K
    Methods Enzymol; 2022; 662():331-361. PubMed ID: 35101217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS.
    Mauri P; Benazzi L; Flohé L; Maiorino M; Pietta PG; Pilawa S; Roveri A; Ursini F
    Biol Chem; 2003 Apr; 384(4):575-88. PubMed ID: 12751787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of the Formation of a Selenocysteine Selenenic Acid through Hydrolysis of a Selenocysteine Selenenyl Iodide Utilizing a Protective Molecular Cradle.
    Goto K; Kimura R; Masuda R; Karasaki T; Sase S
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro.
    Ma S; Caprioli RM; Hill KE; Burk RF
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):593-600. PubMed ID: 12781460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase genes in rainbow trout (Oncorhynchus mykiss) and their modulation by in vitro selenium exposure.
    Pacitti D; Wang T; Page MM; Martin SA; Sweetman J; Feldmann J; Secombes CJ
    Aquat Toxicol; 2013 Apr; 130-131():97-111. PubMed ID: 23384997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of selenocysteine to the peroxidase activity of selenoprotein S.
    Liu J; Rozovsky S
    Biochemistry; 2013 Aug; 52(33):5514-6. PubMed ID: 23914919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoglycosides decrease glutathione peroxidase-1 activity by interfering with selenocysteine incorporation.
    Handy DE; Hang G; Scolaro J; Metes N; Razaq N; Yang Y; Loscalzo J
    J Biol Chem; 2006 Feb; 281(6):3382-8. PubMed ID: 16354666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Electrophilic Intermediates in the Bypass Mechanism of Glutathione Peroxidase: Synthesis, Reactivity, and Structures of Selenocysteine-Derived Cyclic Selenenyl Amides.
    Masuda R; Karasaki T; Sase S; Kuwano S; Goto K
    Chemistry; 2023 Dec; 29(71):e202302615. PubMed ID: 37738074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glutathione peroxidase-1 in health and disease.
    Handy DE; Loscalzo J
    Free Radic Biol Med; 2022 Aug; 188():146-161. PubMed ID: 35691509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation energies of selenoxide elimination from Se-substituted selenocysteine.
    Bayse CA; Allison BD
    J Mol Model; 2007 Jan; 13(1):47-53. PubMed ID: 16724196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ancient Loss of Catalytic Selenocysteine Spurred Convergent Adaptation in a Mammalian Oxidoreductase.
    Rees J; Sarangi G; Cheng Q; Floor M; Andrés AM; Oliva Miguel B; Villà-Freixa J; Arnér ESJ; Castellano S
    Genome Biol Evol; 2024 Mar; 16(3):. PubMed ID: 38447079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates.
    Sarma BK; Mugesh G
    Chemistry; 2008; 14(34):10603-14. PubMed ID: 18932179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site.
    Bortoli M; Torsello M; Bickelhaupt FM; Orian L
    Chemphyschem; 2017 Nov; 18(21):2990-2998. PubMed ID: 28837255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the binding site of methylglyoxal on glutathione peroxidase: methylglyoxal inhibits glutathione peroxidase activity via binding to glutathione binding sites Arg 184 and 185.
    Park YS; Koh YH; Takahashi M; Miyamoto Y; Suzuki K; Dohmae N; Takio K; Honke K; Taniguchi N
    Free Radic Res; 2003 Feb; 37(2):205-11. PubMed ID: 12653209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry and Chemical Biology of Selenenyl Sulfides and Thioseleninic Acids.
    Hamsath A; Xian M
    Antioxid Redox Signal; 2020 Dec; 33(16):1143-1157. PubMed ID: 32151152
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.