BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 25125042)

  • 21. Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides.
    Fan A; Li SM
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5389-99. PubMed ID: 26875876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases.
    Fan A; Xie X; Li SM
    Org Biomol Chem; 2015 Jul; 13(27):7551-7. PubMed ID: 26077893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of 6-DMATS
    Winkelblech J; Xie X; Li SM
    Org Biomol Chem; 2016 Oct; 14(41):9883-9895. PubMed ID: 27714299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the biosynthesis of prenylated xanthones: Xptb from Aspergillus nidulans catalyses an O-prenylation of xanthones.
    Pockrandt D; Ludwig L; Fan A; König GM; Li SM
    Chembiochem; 2012 Dec; 13(18):2764-71. PubMed ID: 23150454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Saturation mutagenesis on Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with strongly increased C3-prenylating activity.
    Zhou K; Zhao W; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9943-9953. PubMed ID: 27311563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AstPT catalyses both reverse N1- and regular C2 prenylation of a methylated bisindolyl benzoquinone.
    Tarcz S; Ludwig L; Li SM
    Chembiochem; 2014 Jan; 15(1):108-16. PubMed ID: 24302698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CdpC2PT, a reverse prenyltransferase from Neosartorya fischeri with a distinct substrate preference from known C2-prenyltransferases.
    Mundt K; Li SM
    Microbiology (Reading); 2013 Oct; 159(Pt 10):2169-2179. PubMed ID: 23845975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 7-dimethylallyl tryptophan synthase from a fungal Neosartorya sp.: biochemical characterization and structural insight into the regioselective prenylation.
    Miyamoto K; Ishikawa F; Nakamura S; Hayashi Y; Nakanishi I; Kakeya H
    Bioorg Med Chem; 2014 Apr; 22(8):2517-28. PubMed ID: 24657051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products.
    Li SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):631-9. PubMed ID: 19633837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A promiscuous prenyltransferase from Aspergillus oryzae catalyses C-prenylations of hydroxynaphthalenes in the presence of different prenyl donors.
    Pockrandt D; Sack C; Kosiol T; Li SM
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4987-94. PubMed ID: 24430210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase.
    Steffan N; Li SM
    Arch Microbiol; 2009 May; 191(5):461-6. PubMed ID: 19277607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prenylation at the indole ring leads to a significant increase of cytotoxicity of tryptophan-containing cyclic dipeptides.
    Wollinsky B; Ludwig L; Hamacher A; Yu X; Kassack MU; Li SM
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3866-9. PubMed ID: 22617493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus.
    Wunsch C; Mundt K; Li SM
    Appl Microbiol Biotechnol; 2015 May; 99(10):4213-23. PubMed ID: 25744649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity.
    Schuller JM; Zocher G; Liebhold M; Xie X; Stahl M; Li SM; Stehle T
    J Mol Biol; 2012 Sep; 422(1):87-99. PubMed ID: 22683356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives.
    Kremer A; Li SM
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):951-61. PubMed ID: 18481055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives.
    Li SM
    Phytochemistry; 2009; 70(15-16):1746-57. PubMed ID: 19398116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology.
    Fan A; Winkelblech J; Li SM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7399-415. PubMed ID: 26227408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.
    Steffan N; Grundmann A; Yin WB; Kremer A; Li SM
    Curr Med Chem; 2009; 16(2):218-31. PubMed ID: 19149573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breaking cyclic dipeptide prenyltransferase regioselectivity by unnatural alkyl donors.
    Liebhold M; Xie X; Li SM
    Org Lett; 2013 Jun; 15(12):3062-5. PubMed ID: 23721375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus.
    Grundmann A; Li SM
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2199-2207. PubMed ID: 16000710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.