BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25125196)

  • 1. Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid.
    Tongprawhan W; Srinuanpan S; Cheirsilp B
    Bioresour Technol; 2014 Oct; 170():90-99. PubMed ID: 25125196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp.
    Yan C; Zheng Z
    Bioresour Technol; 2013 Jul; 139():292-9. PubMed ID: 23665690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO
    Ramos-Ibarra JR; Snell-Castro R; Neria-Casillas JA; Choix FJ
    Bioprocess Biosyst Eng; 2019 Oct; 42(10):1603-1610. PubMed ID: 31190283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized oleaginous microalgae as effective two-phase purify unit for biogas and anaerobic digester effluent coupling with lipid production.
    Srinuanpan S; Cheirsilp B; Boonsawang P; Prasertsan P
    Bioresour Technol; 2019 Jun; 281():149-157. PubMed ID: 30818266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.
    Zhao Y; Wang J; Zhang H; Yan C; Zhang Y
    Bioresour Technol; 2013 May; 136():461-8. PubMed ID: 23567717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.
    Thawechai T; Cheirsilp B; Louhasakul Y; Boonsawang P; Prasertsan P
    Bioresour Technol; 2016 Nov; 219():139-149. PubMed ID: 27484670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.
    Ghosh S; Roy S; Das D
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient composition of culture media induces different patterns of CO
    Choix FJ; Polster E; Corona-González RI; Snell-Castro R; Méndez-Acosta HO
    Bioprocess Biosyst Eng; 2017 Dec; 40(12):1733-1742. PubMed ID: 28801770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.
    Hernández D; Solana M; Riaño B; García-González MC; Bertucco A
    Bioresour Technol; 2014 Oct; 170():370-378. PubMed ID: 25151474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading.
    Nagarajan D; Lee DJ; Chang JS
    Bioresour Technol; 2019 Oct; 290():121804. PubMed ID: 31327690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated lipid production, CO
    Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.
    Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ
    Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Choix FJ; Snell-Castro R; Arreola-Vargas J; Carbajal-López A; Méndez-Acosta HO
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1304-1322. PubMed ID: 28488119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.
    Fan J; Xu H; Luo Y; Wan M; Huang J; Wang W; Li Y
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2451-62. PubMed ID: 25620370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Nitrogen Supplementation Status on CO
    Cho JM; Oh YK; Park WK; Chang YK
    J Microbiol Biotechnol; 2020 Aug; 30(8):1235-1243. PubMed ID: 32855379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.
    Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A
    J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.