These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25125204)

  • 1. Rationally synthesized five-fold twinned core-shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide.
    Khi NT; Baik H; Lee H; Yoon J; Sohn JH; Lee K
    Nanoscale; 2014 Oct; 6(19):11007-12. PubMed ID: 25125204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave synthesis of Au-Rh core-shell nanoparticles and implications of the shell thickness in hydrogenation catalysis.
    García S; Anderson RM; Celio H; Dahal N; Dolocan A; Zhou J; Humphrey SM
    Chem Commun (Camb); 2013 May; 49(39):4241-3. PubMed ID: 23389671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Catalytic Hydrogenation Performance of Rh-Co
    Zhang Q; Xu C; Yin H; Zhou S
    ACS Omega; 2019 Dec; 4(24):20829-20837. PubMed ID: 31858069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Pt
    Zhu J; Xiao M; Li K; Liu C; Zhao X; Xing W
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30066-30071. PubMed ID: 27735187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of Pd@Pt
    Wang Y; Wang W; Xue F; Cheng Y; Liu K; Zhang Q; Liu M; Xie S
    Chem Commun (Camb); 2018 May; 54(41):5185-5188. PubMed ID: 29736536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-dominated shape recovery of nanocrystals: a new strategy for trimetallic catalysts.
    Wu Y; Wang D; Chen X; Zhou G; Yu R; Li Y
    J Am Chem Soc; 2013 Aug; 135(33):12220-3. PubMed ID: 23931570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica-dendrimer core-shell microspheres with encapsulated ultrasmall palladium nanoparticles: efficient and easily recyclable heterogeneous nanocatalysts.
    Biradar AV; Biradar AA; Asefa T
    Langmuir; 2011 Dec; 27(23):14408-18. PubMed ID: 21951192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axially twinned nanodumbbell with a Pt bar and two Rh@Pt balls designed for high catalytic activity.
    Khi NT; Yoon J; Kim H; Lee S; Kim B; Baik H; Kwon SJ; Lee K
    Nanoscale; 2013 Jul; 5(13):5738-42. PubMed ID: 23715587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles.
    Alayoglu S; Eichhorn B
    J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core(Fe)-shell(Au) nanoparticles obtained from thin Fe/Au bilayers employing surface segregation.
    Amram D; Rabkin E
    ACS Nano; 2014 Oct; 8(10):10687-93. PubMed ID: 25211205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodium nanoparticles inside well-defined unimolecular amphiphilic polymeric nanoreactors: synthesis and biphasic hydrogenation catalysis.
    Wang H; Fiore AM; Fliedel C; Manoury E; Philippot K; Dell'Anna MM; Mastrorilli P; Poli R
    Nanoscale Adv; 2021 May; 3(9):2554-2566. PubMed ID: 36134168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.
    Shin HS; Huh S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6324-31. PubMed ID: 23106495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis.
    Sneed BT; Brodsky CN; Kuo CH; Lamontagne LK; Jiang Y; Wang Y; Tao FF; Huang W; Tsung CK
    J Am Chem Soc; 2013 Oct; 135(39):14691-700. PubMed ID: 24060505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles.
    Lee WR; Kim MG; Choi JR; Park JI; Ko SJ; Oh SJ; Cheon J
    J Am Chem Soc; 2005 Nov; 127(46):16090-7. PubMed ID: 16287295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis.
    Bayram E; Linehan JC; Fulton JL; Roberts JA; Szymczak NK; Smurthwaite TD; Özkar S; Balasubramanian M; Finke RG
    J Am Chem Soc; 2011 Nov; 133(46):18889-902. PubMed ID: 22035197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.
    Stamenkovic VR; Fowler B; Mun BS; Wang G; Ross PN; Lucas CA; Marković NM
    Science; 2007 Jan; 315(5811):493-7. PubMed ID: 17218494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry.
    Johnson NJ; van Veggel FC
    ACS Nano; 2014 Oct; 8(10):10517-27. PubMed ID: 25289882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.